دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists

79,900 تومان

  • ویرایش: 2
  • نویسنده: راسل دراگو
  • تعداد صفحات: 776 صفحه
  • حجم فایل: 25.3 مگابایت
  • فرمت: PDF

دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists

کتاب طیف سنجی در شیمی معدنی راسل دراگو ویرایش 2 دوم با عنوان Physical Methods for Chemists 2nd Edition by Russell S. Drago از بهترین کتاب های مرجع و تخصصی در زمینه طیف سنجی شیمی معدنی می باشد.

درس طیف سنجی ترکیبات معدنی جز مهم ترین  دروس مقطع کارشناسی ارشد شیمی معدنی می باشد . یک دانشجوی شیمی باید قادر باشد طیف های انواع اسپکتروسکوپی را تحلیل و تفسیر کند که در این میان کتاب طیف سنجی دراگو منبعی بسیار ارزشمند و مفید می باشد.

 

مشخصات کتاب 

  • عنوان کتاب: Physical Methods for Chemists
  • فرمت فایل: PDF
  • حجم فایل فشرده: 25.3 مگابایت
  • زبان نوشتاری: انگلیسی
  • ویرایش: 2
  • نویسنده:  Russell S. Drago
  • شابک: 9780030751769, 0030751764
  • تعداد صفحات: 776 صفحه
  • تعداد فصل ها: 17 فصل

 

حل المسائل کتاب هم از اینجا دانلود کنید

 

فهرست مطالب و عناوین فصل های کتاب طیف سنجی شیمی معدنی دراگو ویرایش 2

فصل ۱: تقارن و گروه های نقطه ای

فصل ۲: نظریه گروه و جدول کاراکتر

فصل ۳: نظریه اوربیتال مولکولی

فصل ۴: مقدمه ای بر اسپکتروسکوپی

فصل ۵: اسپکتروسکوپی جذب الکترونی

فصل ۶: اسپکتروسکوپی ارتعاشی و پرخشی ( IR، Raman و Microwave)

فصل ۷: اسپکتروسکوپی رزونانس مغناطیسی هسته (NMR)

فصل ۸: دینامیک و تبدیل فوریه NMR

فصل ۹: اسپکتروسکوپی رزونانس پارامغناطیس الکترون (EPR)

فصل ۱۰: ساختار الکترونی و طیف یون های فلزات واسطه

فصل ۱۱: مغناطیس

فصل ۱۲: رزونانس مغناطیسی هسته (NMR) مواد پارامغناطیس در محلول

فصل ۱۳: طیف رزونانس پارامغناطیس الکترون کمپلکس فلزات واسطه

فصل ۱۴:اسپکتروسکوپی رزونانس چهار قطبی هسته (NQR)

فصل ۱۵: اسپکتروسکوپی موزبائر

فصل ۱۶: روش های یونیزاسیون: طیف سنجی جرمی، فوتوالکترون، سیکلوترون

فصل ۱۷: طیف سنجی پراش پرتو ایکس (XRD)

Symmetry and the Point Groups 1

Introduction 1

1-1 Definition of Symmetry 1

1-2 Symmetry Elements 2

1-3 Point Groups 8

1-4 Space Symmetry 11

1-5 Some Definitions and Applications of Symmetry

Considerations 12

References Cited 14

Additional Reading 14

Exercises 14

Group Theory and the Character Tables 18

2-1 Introduction 18

2-2 Rules for Elements that Constitute a Group 19

2-3 Group Multiplication Tables 19

2-4 Summary of the Properties of Vectors and Matrices 25

2-5 Representations; Geometric Transformations 30

2-6 Irreducible Representations 34

2-7 Character Tables 35

2-8 Non-Diagonal Representations 36

2-9 More on Character Tables 41

2-10 More on Representations 43

2-11 Simplified Procedures for Generating and Factoring Total

Representations: The Decomposition Formula 44

2-12 Direct Products 46

Additional Reading 47

Exercises 47

Molecular Orbital Theory and Its Symmetry Aspects 52

Introduction 52

3-1 Operators 52

3-2 A Matrix Formulation of Molecular Orbital Calculations 56

3-3 Perturbation Theory 57

Symmetry in Quantum Mechanics 59

3-4 Wave Functions as a Basis for Irreducible Representations 59

3-5 Projecting Molecular Orbitals 60

Molecular Orbital Calculations 68

3-6 Hiickel Procedure 68

3-7 Properties Derived from Wave Functions 72

3-8 Extended Huckel Procedure 74

3-9 SCF-INDO (Intermediate Neglect of Differential Overlap) 78

3-10 Some Predictions from M.O. Theory on Alternately Double

Bonded Hydrocarbons 83

3-11 More on Product Ground State Wave Functions 84

References Cited 85

Additional Reading 85

Compilations 86

Exercises 86

General Introduction to Spectroscopy 90

4-1 Nature of Radiation 90

4-2 Energies Corresponding to Various Kinds of Radiation 91

4-3 Atomic and Molecular Transitions 92

4-4 Selection Rules 95

4-5 Relaxation and Chemical Exchange Influences on Spectral

Line Width 95

General Applications 98

4-6 Determination of Concentration 99

4-7 Isosbestic Points 103

4-8 Job’s Method of Isomolar Solutions 106

4-9 “Fingerprinting” 106

References Cited 107

Exercises 107

5

Electronic Absorption Spectroscopy 109

Introduction 109

5-1 Vibrational and Electronic Energy Levels in a Diatomic

Molecule 109

Contents iX

5-2 Relationship of Potential Energy Curves to Electronic Spectra 111

5-3 Nomenclature 113

Assignment of Transitions 117

5-4 Spin-Orbit Coupling 117

5-5 Configuration Interaction 117

5-6 Criteria to Aid in Band Assignment 118

The Intensity of Electronic Transitions 120

5-7 Oscillator Strengths 120

5-8 Transition Moment Integral 120

5-9 Derivation of Some Selection Rules 123

5-10 Spectrum of Formaldehyde 123

5-11 Spin-Orbit and Vibronic Coupling Contributions to Intensity 124

5-12 Mixing of d and p Orbitals in Certain Symmetries 126

5-13 Magnetic Dipole and Electric Quadrupole Contributions to

Intensity 127

5-14 Charge Transfer Transitions 127

5-15 Polarized Absorption Spectra 128

Applications 130

5-16 Fingerprinting 130

5-17 Molecular Addition Compounds of Iodine 133

5-18 Effect of Solvent Polarity on Charge-Transfer Spectra 135

5-19 Structures of Excited States 137

Optical Rotary Dispersion, Circular Dichroism, and

Magnetocircular Dichroism 137

5-20 Introduction 137

5-21 Selection Rules 139

5-22 Applications 140

5-23 Magnetocircular Dichroism 141

References Cited 143

Additional References 144

Exercises 145

6

Vibration and Rotation Spectroscopy: Infrared, Raman, and Microwave 149

Introduction 149

6-1 Harmonic and Anharmonic Vibrations 149

6-2 Absorption of Radiation by Molecular Vibrations-

Selection Rules 150

6-3 Force Constant 151

Vibrations in a Polyatomic Molecule 153

6-4 The 3N – 6(5) Rule 153

6-5 Effects Giving Rise to Absorption Bands 154

X Contents

6-6 Normal Coordinate Analyses and Band Assignments 156

6-7 Group Vibrations and the Limitations of This Idea 160

Raman Spectroscopy 162

6-8 Introduction 162

6-9 Raman Selection Rules 164

6-10 Polarized and Depolarized Raman Lines 168

6-11 Resonance Raman Spectroscopy 170

Symmetry Aspects of Molecular Vibrations 172

6-12 Significance of the Nomenclature Used to Describe Various

Vibrations 172

6-13 Use of Symmetry Considerations to Determine the Number

of Active Infrared and Raman Lines 172

6-14 Symmetry Requirements for Coupling, Combination Bands,

and Fermi Resonance 176

6-15 Microwave Spectroscopy 177

6-16 Rotational Raman Spectra 179

Applications of Infrared and Raman Spectroscopy 179

6-17 Procedures 179

6-18 Fingerprinting 184

6-19 Spectra of Gases 186

6-20 Application of Raman and Infrared Selection Rules to the

Determination of Inorganic Structures 192

Bond Strength-Frequency Shift Relations 194

6-21 Changes in the Spectra of Donor Molecules upon

Coordination 196

6-22 Change in Spectra Accompanying Change in Symmetry

upon Coordination 198

References Cited 202

Additional References 205

Exercises 206

7

Nuclear Magnetic Resonance Spectroscopy-Elementary Aspects 211

Introduction 211

Classical Description of the NMR Experiment-The Bloch

Equations 212

7-1 Some Definitions 212

7-2 Behavior of a Bar Magnet in a Magnetic Field 213

7-3 Rotating Axis Systems 214

7-4 Magnetization Vectors and Relaxation 215

7-5 The NMR Transition 217

7-6 The Bloch Equations 218

7-7 The NMR Experiment 220

Contents XI

The Quantum Mechanical Description of the NMR Experiment 224

7-8 Properties of I 224

7-9 Transition Probabilities 225

Relaxation Effects and Mechanisms 227

7-10 Measuring the Chemical Shift 229

7-11 Interpretation of the Chemical Shift 232

7-12 Interatomic Ring Currents 241

7-13 Examples of Chemical Shift Interpretation 241

Spin-Spin Splitting 243

7-14 Effect of Spin-Spin Splitting on the Spectrum 243

7-15 Discovering Non-Equivalent Protons 246

7-16 Effect of the Number and Nature of the Bonds on

Spin-Spin Coupling 247

7-17 Scalar Spin-Spin Coupling Mechanisms 249

7-18 Application of Spin-Spin Coupling to Structure

Determination 252

Factors Influencing the Appearance of the NMR Spectrum 257

7-19 Effect of Fast Chemical Reactions on the Spectrum 257

7-20 Quantum Mechanical Description of Coupling 259

7-21 Effects of the Relative Magnitudes of J and A on the Spectrum

of an AB Molecule 263

7-22 More Complicated Second-Order Systems 265

7-23 Double Resonance and Spin-Tickling Experiments 267

7-24 Determining Signs of Coupling Constants 268

7-25 Effects on the Spectrum of Nuclei with Quadrupole Moments 269

References Cited 271

Compilations of Chemical Shifts 272

Exercises 273

8

Dynamic and Fourier Transform NMR 290

Introduction 290

Evaluation of Theormodynamic Data with NMR 290

NMR Kinetics 291

8-1 Rate Constants and Activation Enthalpies from NMR 291

8-2 Determination of Reaction Orders by NMR 295

8-3 Some Applications of NMR Kinetic Studies 297

8-4 Intramolecular Rearrangements Studied by NMRFluxional

Behavior 300

8-5 Spin Saturation Labeling 305

8-6 The Nuclear Overhauser Effect 306

Fourier Transform NMR 309

8-7 Principles 309

8-8 Optimizing the FTNMR Experiment 314

8-9 The Measurement of T by FTNMR 315

8-10 Use of T, for Peak Assignments 317

8-11 NMR of Quadrupolar Nuclei 319

Applications and Strategies in FTNMR 319

8-12 3C 319

8-13 Other Nuclei 323

More on Relaxation Processes 326

8-14 Spectral Density 326

Multipulse Methods 328

8-15 Introduction 328

8-16 Spin Echoes 329

8-17 Sensitivity-Enhancement Methods 331

8-18 Selective Excitation and Suppression 332

8-19 Two-Dimensional NMR 334

NMR in Solids and Liquid Crystals 340

8-20 Direct Dipolar Coupling 340

8-21 NMR Studies of Solids 341

8-22 NMR Studies in Liquid Crystal Solvents 342

8-23 High Resolution NMR of Solids 347

References Cited 348

Additional References 351

Exercises 352

9

Electron Paramagnetic Resonance Spectroscopy 360

Introduction 360

9-1 Principles 360

Nuclear Hyperfine Splitting 363

9-2 The Hydrogen Atom 363

9-3 Presentation of the Spectrum 368

9-4 Hyperfine Splittings in Isotropic Systems Involving More

Than One Nucleus 370

9-5 Contributions to the Hyperfine Coupling Constant in

Isotropic Systems 374

Anisotropic Effects 380

9-6 Anisotropy in the g Value 380

9-7 Anisotropy in the Hyperfine Coupling 383

9-8 The EPR of Triplet States 390

Contents Xii

9-9 Nuclear Quadrupole Interaction 392

9-10 Line Widths in EPR 394

9-11 The Spin Hamiltonian 396

9-12 Miscellaneous Applications 397

References Cited 400

Additional References 401

Exercises 401

10

The Electronic Structure and Spectra of Transition Metal Ions 409

Introduction 409

Free Ion Electronic States 409

10-1 Electron-Electron Interactions and Term Symbols 409

10-2 Spin-Orbit Coupling in Free Ions 413

Crystal Fields 416

10-3 Effects of Ligands on the d Orbital Energies 416

10-4 Symmetry Aspects of the d Orbital Splitting by Ligands 419

10-5 Double Groups 427

10-6 The Jahn-Teller Effect 429

10-7 Magnetic Coupling in Metal Ion Clusters 430

Applications 433

10-8 Survey of the Electronic Spectra of 0 Complexes 433

10-9 Calculation of Dq and # for 0 h Ni(II) Complexes 437

10-10 Effect of Distortions on the d Orbital Energy Levels 443

10-11 Structural Evidence from the Electronic Spectrum 447

Bonding Parameters from Spectra 450

10-12 a and 7E Bonding Parameters from the Spectra of

Tetragonal Complexes 450

10-13 The Angular Overlap Model 452

Miscellaneous Topics Involving Electronic Ttransitions 458

10-14 Electronic Spectra of Oxo-Bridged Dinuclear Iron Centers 458

10-15 Intervalence Electron Transfer Bands 459

10-16 Photoreactions 462

References Cited 462

Exercises 463

11

Magnetism 469

11-1 Introduction 469

11-2 Types of Magnetic Behavior 471

XiV Contents

11-3 Van Vleck’s Equation 476

11-4 Applications of Susceptibility Measurements 483

11-5 Intramolecular Effects 486

11-6 High Spin-Low Spin Equilibria 489

11-7 Measurement of Magnetic Susceptibilities 490

11-8 Superparamagnetism 491

References Cited 494

Exercises 496

12

Nuclear Magnetic Resonance of Paramagnetic Substances in Solution 500

by Ivano Bertini and C. Luchinat

12-1 Introduction 500

12-2 Properties of Paramagnetic Compounds 501

12-3 Considerations Concerning Electron Spin 503

12-4 The Contact Shift 507

12-5 The Pseudocontact Shift 508

12-6 Lanthanides 510

12-7 Factoring the Contact and Pseudocontact Shifts 512

12-8 The Contact Shift and Spin Density 514

12-9 Factors Affecting Nuclear Relaxation in Paramagnetic

System 519

12-10 Relaxometry 524

12-11 Electronic Relaxation Times 527

12-12 Contrast Agents 530

12-13 Trends in the Development of Paramagnetic NMR 531

12-14 Some Applications 534

12-15 The Investigation of Bimetallic Systems 543

References Cited 552

Exercises 556

13

Electron Paramagnetic Resonance Spectra of Transition Metal Ion

Complexes 559

13-1 Introduction 559

13-2 Interpretation of the g-Values 564

13-3 Hyperfine Couplings and Zero Field Splittings 571

13-4 Ligand Hyperfine Couplings 576

13-5 Survey of the EPR Spectra of First-Row Transition Metal Ion

Complexes 578

13-6 The EPR of Metal Clusters 591

13-7 Double Resonance and Fourier Transform EPR Techniques 594

References Cited 594

Additional References 596

Exercises 597

503

Contents XV

14

Nuclear Quadrupole Resonance Spectroscopy, NOR 604

14-1 Introduction 604

14-2 Energies of the Quadrupole Transitions 607

14-3 Effect of a Magnetic Field on the Spectra 611

14-4 Relationship Between Electric Field Gradient and

Molecular Structure 612

14-5 Applications 616

14-6 Double Resonance Techniques 620

References Cited 622

Additional References 623

Exercises 624

15

M6ssbauer Spectroscopy 626

15-1 Introduction 626

15-2 Interpretation of Isomer Shifts 630

15-3 Quadrupole Interactions 631

15-4 Paramagnetic Mbssbauer Spectra 633

15-5 Mossbauer Emission Spectroscopy 635

15-6 Applications 635

References Cited 646

Series 646

Exercises 647

16

Ionization Methods: Mass Spectrometry, Ion Cyclotron Resonance, Photoelectron Spectroscopy 650

Mass Spectrometry 650

16-1 Instrument Operation and Presentation of Spectra 650

16-2 Processes That Can Occur When a Molecule and a High

Energy Electron Combine 655

16-3 Fingerprint Application 657

16-4 Interpretation of Mass Spectra 659

16-5 Effect of Isotopes on the Appearance of a Mass

Spectrum 660

16-6 Molecular Weight Determinations; Field Ionization

Techniques 662

16-7 Evaluation of Heats of Sublimation and Species in the

Vapor Over High Melting Solids 663

16-8 Appearance Potentials and Ionization Potentials 664

FTICR/MS 665

16-9 The Fourier Transform Ion Cyclotron Resonance Technique 665

XVi Contents

Surface Science Techniques 667

16-10 Introduction 667

16-11 Photoelectron Spectroscopy 667

16-12 SIMS (Secondary Ion Mass Spectrometry) 677

16-13 LEED, AES, and HREELS Spectroscopy 678

16-14 STM (Scanning Tunneling Microscopy) and AFM

(Atomic Force Microscopy) 680

EXAFS and XANES 681

16-15 Introduction 681

16-16 Applications 682

References Cited 682

Exercises 685

17

X-Ray Crystallography 689

by Joseph W. Ziller and Arnold L. Rheingold

17-1 Introduction 689

Principles 690

17-2 Diffraction of X-Rays 690

17-3 Reflection and Reciprocal Space 691

17-4 The Diffraction Pattern 693

17-5 X-Ray Scattering by Atoms and Structures 693

Crystals 695

17-6 Crystal Growth 695

17-7 Selection of Crystals 696

17-8 Mounting Crystals 697

Methodology 698

17-9 Diffraction Equipment 698

17-10 Diffractometer Data Collection 699

17-11 Computers 700

Some Future Developmenti- 700

17-12 Area Detectors 700

17-13 X-Ray versus Neutron Diffraction 701

17-14 Synchrotron Radiation 701

Symmetry and Related Concerns 701

17-15 Crystal Classes 701

17-16 Space Groups 703

17-17 Space-Group Determination 704

17-18 Avoiding Crystallographic Mistakes 705

17-19 Molecular versus Crystallographic Symmetry 707

17-20 Quality Assessment 707

17-21 Crystallographic Data 710

Contents XVIl

References Cited 711

Exercises 711

Appendix A

Character Tables for Chemically Important Symmetry Groups 713

Appendix B

Character Tables for Some Double Groups 724

Appendix

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا