- ویرایش: 2
- نویسنده: راسل دراگو
- تعداد صفحات: 776 صفحه
- حجم فایل: 25.3 مگابایت
- فرمت: PDF
دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists
259,000 تومان
دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists
کتاب طیف سنجی در شیمی معدنی راسل دراگو ویرایش 2 دوم با عنوان Physical Methods for Chemists 2nd Edition by Russell S. Drago از بهترین کتاب های مرجع و تخصصی در زمینه طیف سنجی شیمی معدنی می باشد.
درس طیف سنجی ترکیبات معدنی جز مهم ترین دروس مقطع کارشناسی ارشد شیمی معدنی می باشد . یک دانشجوی شیمی باید قادر باشد طیف های انواع اسپکتروسکوپی را تحلیل و تفسیر کند که در این میان کتاب طیف سنجی دراگو منبعی بسیار ارزشمند و مفید می باشد.
مشخصات کتاب
- عنوان کتاب: Physical Methods for Chemists
- فرمت فایل: PDF
- حجم فایل فشرده: 25.3 مگابایت
- زبان نوشتاری: انگلیسی
- ویرایش: 2
- نویسنده: Russell S. Drago
- شابک: 9780030751769, 0030751764
- تعداد صفحات: 776 صفحه
- تعداد فصل ها: 17 فصل
حل المسائل کتاب هم از اینجا دانلود کنید
فهرست مطالب و عناوین فصل های کتاب طیف سنجی شیمی معدنی دراگو ویرایش 2
فصل ۱: تقارن و گروه های نقطه ای
فصل ۲: نظریه گروه و جدول کاراکتر
فصل ۳: نظریه اوربیتال مولکولی
فصل ۴: مقدمه ای بر اسپکتروسکوپی
فصل ۵: اسپکتروسکوپی جذب الکترونی
فصل ۶: اسپکتروسکوپی ارتعاشی و پرخشی ( IR، Raman و Microwave)
فصل ۷: اسپکتروسکوپی رزونانس مغناطیسی هسته (NMR)
فصل ۸: دینامیک و تبدیل فوریه NMR
فصل ۹: اسپکتروسکوپی رزونانس پارامغناطیس الکترون (EPR)
فصل ۱۰: ساختار الکترونی و طیف یون های فلزات واسطه
فصل ۱۱: مغناطیس
فصل ۱۲: رزونانس مغناطیسی هسته (NMR) مواد پارامغناطیس در محلول
فصل ۱۳: طیف رزونانس پارامغناطیس الکترون کمپلکس فلزات واسطه
فصل ۱۴:اسپکتروسکوپی رزونانس چهار قطبی هسته (NQR)
فصل ۱۵: اسپکتروسکوپی موزبائر
فصل ۱۶: روش های یونیزاسیون: طیف سنجی جرمی، فوتوالکترون، سیکلوترون
فصل ۱۷: طیف سنجی پراش پرتو ایکس (XRD)
Symmetry and the Point Groups 1
Introduction 1
1-1 Definition of Symmetry 1
1-2 Symmetry Elements 2
1-3 Point Groups 8
1-4 Space Symmetry 11
1-5 Some Definitions and Applications of Symmetry
Considerations 12
References Cited 14
Additional Reading 14
Exercises 14
Group Theory and the Character Tables 18
2-1 Introduction 18
2-2 Rules for Elements that Constitute a Group 19
2-3 Group Multiplication Tables 19
2-4 Summary of the Properties of Vectors and Matrices 25
2-5 Representations; Geometric Transformations 30
2-6 Irreducible Representations 34
2-7 Character Tables 35
2-8 Non-Diagonal Representations 36
2-9 More on Character Tables 41
2-10 More on Representations 43
2-11 Simplified Procedures for Generating and Factoring Total
Representations: The Decomposition Formula 44
2-12 Direct Products 46
Additional Reading 47
Exercises 47
Molecular Orbital Theory and Its Symmetry Aspects 52
Introduction 52
3-1 Operators 52
3-2 A Matrix Formulation of Molecular Orbital Calculations 56
3-3 Perturbation Theory 57
Symmetry in Quantum Mechanics 59
3-4 Wave Functions as a Basis for Irreducible Representations 59
3-5 Projecting Molecular Orbitals 60
Molecular Orbital Calculations 68
3-6 Hiickel Procedure 68
3-7 Properties Derived from Wave Functions 72
3-8 Extended Huckel Procedure 74
3-9 SCF-INDO (Intermediate Neglect of Differential Overlap) 78
3-10 Some Predictions from M.O. Theory on Alternately Double
Bonded Hydrocarbons 83
3-11 More on Product Ground State Wave Functions 84
References Cited 85
Additional Reading 85
Compilations 86
Exercises 86
General Introduction to Spectroscopy 90
4-1 Nature of Radiation 90
4-2 Energies Corresponding to Various Kinds of Radiation 91
4-3 Atomic and Molecular Transitions 92
4-4 Selection Rules 95
4-5 Relaxation and Chemical Exchange Influences on Spectral
Line Width 95
General Applications 98
4-6 Determination of Concentration 99
4-7 Isosbestic Points 103
4-8 Job’s Method of Isomolar Solutions 106
4-9 “Fingerprinting” 106
References Cited 107
Exercises 107
5
Electronic Absorption Spectroscopy 109
Introduction 109
5-1 Vibrational and Electronic Energy Levels in a Diatomic
Molecule 109
Contents iX
5-2 Relationship of Potential Energy Curves to Electronic Spectra 111
5-3 Nomenclature 113
Assignment of Transitions 117
5-4 Spin-Orbit Coupling 117
5-5 Configuration Interaction 117
5-6 Criteria to Aid in Band Assignment 118
The Intensity of Electronic Transitions 120
5-7 Oscillator Strengths 120
5-8 Transition Moment Integral 120
5-9 Derivation of Some Selection Rules 123
5-10 Spectrum of Formaldehyde 123
5-11 Spin-Orbit and Vibronic Coupling Contributions to Intensity 124
5-12 Mixing of d and p Orbitals in Certain Symmetries 126
5-13 Magnetic Dipole and Electric Quadrupole Contributions to
Intensity 127
5-14 Charge Transfer Transitions 127
5-15 Polarized Absorption Spectra 128
Applications 130
5-16 Fingerprinting 130
5-17 Molecular Addition Compounds of Iodine 133
5-18 Effect of Solvent Polarity on Charge-Transfer Spectra 135
5-19 Structures of Excited States 137
Optical Rotary Dispersion, Circular Dichroism, and
Magnetocircular Dichroism 137
5-20 Introduction 137
5-21 Selection Rules 139
5-22 Applications 140
5-23 Magnetocircular Dichroism 141
References Cited 143
Additional References 144
Exercises 145
6
Vibration and Rotation Spectroscopy: Infrared, Raman, and Microwave 149
Introduction 149
6-1 Harmonic and Anharmonic Vibrations 149
6-2 Absorption of Radiation by Molecular Vibrations-
Selection Rules 150
6-3 Force Constant 151
Vibrations in a Polyatomic Molecule 153
6-4 The 3N – 6(5) Rule 153
6-5 Effects Giving Rise to Absorption Bands 154
X Contents
6-6 Normal Coordinate Analyses and Band Assignments 156
6-7 Group Vibrations and the Limitations of This Idea 160
Raman Spectroscopy 162
6-8 Introduction 162
6-9 Raman Selection Rules 164
6-10 Polarized and Depolarized Raman Lines 168
6-11 Resonance Raman Spectroscopy 170
Symmetry Aspects of Molecular Vibrations 172
6-12 Significance of the Nomenclature Used to Describe Various
Vibrations 172
6-13 Use of Symmetry Considerations to Determine the Number
of Active Infrared and Raman Lines 172
6-14 Symmetry Requirements for Coupling, Combination Bands,
and Fermi Resonance 176
6-15 Microwave Spectroscopy 177
6-16 Rotational Raman Spectra 179
Applications of Infrared and Raman Spectroscopy 179
6-17 Procedures 179
6-18 Fingerprinting 184
6-19 Spectra of Gases 186
6-20 Application of Raman and Infrared Selection Rules to the
Determination of Inorganic Structures 192
Bond Strength-Frequency Shift Relations 194
6-21 Changes in the Spectra of Donor Molecules upon
Coordination 196
6-22 Change in Spectra Accompanying Change in Symmetry
upon Coordination 198
References Cited 202
Additional References 205
Exercises 206
7
Nuclear Magnetic Resonance Spectroscopy-Elementary Aspects 211
Introduction 211
Classical Description of the NMR Experiment-The Bloch
Equations 212
7-1 Some Definitions 212
7-2 Behavior of a Bar Magnet in a Magnetic Field 213
7-3 Rotating Axis Systems 214
7-4 Magnetization Vectors and Relaxation 215
7-5 The NMR Transition 217
7-6 The Bloch Equations 218
7-7 The NMR Experiment 220
Contents XI
The Quantum Mechanical Description of the NMR Experiment 224
7-8 Properties of I 224
7-9 Transition Probabilities 225
Relaxation Effects and Mechanisms 227
7-10 Measuring the Chemical Shift 229
7-11 Interpretation of the Chemical Shift 232
7-12 Interatomic Ring Currents 241
7-13 Examples of Chemical Shift Interpretation 241
Spin-Spin Splitting 243
7-14 Effect of Spin-Spin Splitting on the Spectrum 243
7-15 Discovering Non-Equivalent Protons 246
7-16 Effect of the Number and Nature of the Bonds on
Spin-Spin Coupling 247
7-17 Scalar Spin-Spin Coupling Mechanisms 249
7-18 Application of Spin-Spin Coupling to Structure
Determination 252
Factors Influencing the Appearance of the NMR Spectrum 257
7-19 Effect of Fast Chemical Reactions on the Spectrum 257
7-20 Quantum Mechanical Description of Coupling 259
7-21 Effects of the Relative Magnitudes of J and A on the Spectrum
of an AB Molecule 263
7-22 More Complicated Second-Order Systems 265
7-23 Double Resonance and Spin-Tickling Experiments 267
7-24 Determining Signs of Coupling Constants 268
7-25 Effects on the Spectrum of Nuclei with Quadrupole Moments 269
References Cited 271
Compilations of Chemical Shifts 272
Exercises 273
8
Dynamic and Fourier Transform NMR 290
Introduction 290
Evaluation of Theormodynamic Data with NMR 290
NMR Kinetics 291
8-1 Rate Constants and Activation Enthalpies from NMR 291
8-2 Determination of Reaction Orders by NMR 295
8-3 Some Applications of NMR Kinetic Studies 297
8-4 Intramolecular Rearrangements Studied by NMRFluxional
Behavior 300
8-5 Spin Saturation Labeling 305
8-6 The Nuclear Overhauser Effect 306
Fourier Transform NMR 309
8-7 Principles 309
8-8 Optimizing the FTNMR Experiment 314
8-9 The Measurement of T by FTNMR 315
8-10 Use of T, for Peak Assignments 317
8-11 NMR of Quadrupolar Nuclei 319
Applications and Strategies in FTNMR 319
8-12 3C 319
8-13 Other Nuclei 323
More on Relaxation Processes 326
8-14 Spectral Density 326
Multipulse Methods 328
8-15 Introduction 328
8-16 Spin Echoes 329
8-17 Sensitivity-Enhancement Methods 331
8-18 Selective Excitation and Suppression 332
8-19 Two-Dimensional NMR 334
NMR in Solids and Liquid Crystals 340
8-20 Direct Dipolar Coupling 340
8-21 NMR Studies of Solids 341
8-22 NMR Studies in Liquid Crystal Solvents 342
8-23 High Resolution NMR of Solids 347
References Cited 348
Additional References 351
Exercises 352
9
Electron Paramagnetic Resonance Spectroscopy 360
Introduction 360
9-1 Principles 360
Nuclear Hyperfine Splitting 363
9-2 The Hydrogen Atom 363
9-3 Presentation of the Spectrum 368
9-4 Hyperfine Splittings in Isotropic Systems Involving More
Than One Nucleus 370
9-5 Contributions to the Hyperfine Coupling Constant in
Isotropic Systems 374
Anisotropic Effects 380
9-6 Anisotropy in the g Value 380
9-7 Anisotropy in the Hyperfine Coupling 383
9-8 The EPR of Triplet States 390
Contents Xii
9-9 Nuclear Quadrupole Interaction 392
9-10 Line Widths in EPR 394
9-11 The Spin Hamiltonian 396
9-12 Miscellaneous Applications 397
References Cited 400
Additional References 401
Exercises 401
10
The Electronic Structure and Spectra of Transition Metal Ions 409
Introduction 409
Free Ion Electronic States 409
10-1 Electron-Electron Interactions and Term Symbols 409
10-2 Spin-Orbit Coupling in Free Ions 413
Crystal Fields 416
10-3 Effects of Ligands on the d Orbital Energies 416
10-4 Symmetry Aspects of the d Orbital Splitting by Ligands 419
10-5 Double Groups 427
10-6 The Jahn-Teller Effect 429
10-7 Magnetic Coupling in Metal Ion Clusters 430
Applications 433
10-8 Survey of the Electronic Spectra of 0 Complexes 433
10-9 Calculation of Dq and # for 0 h Ni(II) Complexes 437
10-10 Effect of Distortions on the d Orbital Energy Levels 443
10-11 Structural Evidence from the Electronic Spectrum 447
Bonding Parameters from Spectra 450
10-12 a and 7E Bonding Parameters from the Spectra of
Tetragonal Complexes 450
10-13 The Angular Overlap Model 452
Miscellaneous Topics Involving Electronic Ttransitions 458
10-14 Electronic Spectra of Oxo-Bridged Dinuclear Iron Centers 458
10-15 Intervalence Electron Transfer Bands 459
10-16 Photoreactions 462
References Cited 462
Exercises 463
11
Magnetism 469
11-1 Introduction 469
11-2 Types of Magnetic Behavior 471
XiV Contents
11-3 Van Vleck’s Equation 476
11-4 Applications of Susceptibility Measurements 483
11-5 Intramolecular Effects 486
11-6 High Spin-Low Spin Equilibria 489
11-7 Measurement of Magnetic Susceptibilities 490
11-8 Superparamagnetism 491
References Cited 494
Exercises 496
12
Nuclear Magnetic Resonance of Paramagnetic Substances in Solution 500
by Ivano Bertini and C. Luchinat
12-1 Introduction 500
12-2 Properties of Paramagnetic Compounds 501
12-3 Considerations Concerning Electron Spin 503
12-4 The Contact Shift 507
12-5 The Pseudocontact Shift 508
12-6 Lanthanides 510
12-7 Factoring the Contact and Pseudocontact Shifts 512
12-8 The Contact Shift and Spin Density 514
12-9 Factors Affecting Nuclear Relaxation in Paramagnetic
System 519
12-10 Relaxometry 524
12-11 Electronic Relaxation Times 527
12-12 Contrast Agents 530
12-13 Trends in the Development of Paramagnetic NMR 531
12-14 Some Applications 534
12-15 The Investigation of Bimetallic Systems 543
References Cited 552
Exercises 556
13
Electron Paramagnetic Resonance Spectra of Transition Metal Ion
Complexes 559
13-1 Introduction 559
13-2 Interpretation of the g-Values 564
13-3 Hyperfine Couplings and Zero Field Splittings 571
13-4 Ligand Hyperfine Couplings 576
13-5 Survey of the EPR Spectra of First-Row Transition Metal Ion
Complexes 578
13-6 The EPR of Metal Clusters 591
13-7 Double Resonance and Fourier Transform EPR Techniques 594
References Cited 594
Additional References 596
Exercises 597
503
Contents XV
14
Nuclear Quadrupole Resonance Spectroscopy, NOR 604
14-1 Introduction 604
14-2 Energies of the Quadrupole Transitions 607
14-3 Effect of a Magnetic Field on the Spectra 611
14-4 Relationship Between Electric Field Gradient and
Molecular Structure 612
14-5 Applications 616
14-6 Double Resonance Techniques 620
References Cited 622
Additional References 623
Exercises 624
15
M6ssbauer Spectroscopy 626
15-1 Introduction 626
15-2 Interpretation of Isomer Shifts 630
15-3 Quadrupole Interactions 631
15-4 Paramagnetic Mbssbauer Spectra 633
15-5 Mossbauer Emission Spectroscopy 635
15-6 Applications 635
References Cited 646
Series 646
Exercises 647
16
Ionization Methods: Mass Spectrometry, Ion Cyclotron Resonance, Photoelectron Spectroscopy 650
Mass Spectrometry 650
16-1 Instrument Operation and Presentation of Spectra 650
16-2 Processes That Can Occur When a Molecule and a High
Energy Electron Combine 655
16-3 Fingerprint Application 657
16-4 Interpretation of Mass Spectra 659
16-5 Effect of Isotopes on the Appearance of a Mass
Spectrum 660
16-6 Molecular Weight Determinations; Field Ionization
Techniques 662
16-7 Evaluation of Heats of Sublimation and Species in the
Vapor Over High Melting Solids 663
16-8 Appearance Potentials and Ionization Potentials 664
FTICR/MS 665
16-9 The Fourier Transform Ion Cyclotron Resonance Technique 665
XVi Contents
Surface Science Techniques 667
16-10 Introduction 667
16-11 Photoelectron Spectroscopy 667
16-12 SIMS (Secondary Ion Mass Spectrometry) 677
16-13 LEED, AES, and HREELS Spectroscopy 678
16-14 STM (Scanning Tunneling Microscopy) and AFM
(Atomic Force Microscopy) 680
EXAFS and XANES 681
16-15 Introduction 681
16-16 Applications 682
References Cited 682
Exercises 685
17
X-Ray Crystallography 689
by Joseph W. Ziller and Arnold L. Rheingold
17-1 Introduction 689
Principles 690
17-2 Diffraction of X-Rays 690
17-3 Reflection and Reciprocal Space 691
17-4 The Diffraction Pattern 693
17-5 X-Ray Scattering by Atoms and Structures 693
Crystals 695
17-6 Crystal Growth 695
17-7 Selection of Crystals 696
17-8 Mounting Crystals 697
Methodology 698
17-9 Diffraction Equipment 698
17-10 Diffractometer Data Collection 699
17-11 Computers 700
Some Future Developmenti- 700
17-12 Area Detectors 700
17-13 X-Ray versus Neutron Diffraction 701
17-14 Synchrotron Radiation 701
Symmetry and Related Concerns 701
17-15 Crystal Classes 701
17-16 Space Groups 703
17-17 Space-Group Determination 704
17-18 Avoiding Crystallographic Mistakes 705
17-19 Molecular versus Crystallographic Symmetry 707
17-20 Quality Assessment 707
17-21 Crystallographic Data 710
Contents XVIl
References Cited 711
Exercises 711
Appendix A
Character Tables for Chemically Important Symmetry Groups 713
Appendix B
Character Tables for Some Double Groups 724
Appendix



دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.