دانلود کتاب راهنما و آموزش نرم افزار گوسین نوشته فورسمن ویرایش 3 + 750 نمونه فایل

99,000 تومان

  • ویرایش :3
  • نویسنده: James B. Foresman , AEleen Frisch
  • تعداد صفحات: 546 صفحه
  • حجم فایل: 41.9 مگابایت
  • فرمت: PDF -رنگی
  • پیوست: فایل های تمرین های کتاب

دانلود کتاب راهنما و آموزش نرم افزار گوسین نوشته فورسمن ویرایش 3 + 750 نمونه فایل

کتاب راهنمای برنامه نویسی و کار با نرم افزار گوسین نوشته و تالیف فورسمن و فریش ویرایش 3 سوم با عنوان  Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian 3nd Edition از بهترین کتاب های تخصصی و مرجع آموزش گوسین همراه با فایل های و نمونه مثال های تمرین های هر بخش با مشخصات زیر دانلود نمایید.

این کتاب توسط James B. Foresman, AEleen Frisch تالیف و نوشته شده شده است. که به بررسی شیمی با روش های ساختار الکترونیکی با استفاده از نرم افزار گوسین می پردازد.

مشخصات کتاب 

  • عنوان کتاب: Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian 
  • فرمت فایل: PDF  و رنگی
  • حجم فایل فشرده: 41.9 مگابایت
  • زبان نوشتاری: انگلیسی
  • ویرایش: 3 + 754 فایل و مثال های ورودی نرم افزار از مثال و تمرین  هر بخش از کتاب
  • نویسنده:  James B. Foresman, AEleen Frisch 
  • تعداد صفحات: 546 صفحه 
  • تعداد فصل ها: 10 فصل
  • نحوه دریافت : دانلود فوری و آنی فایل بعد از پرداخت

 

فهرست مطالب و عناوین بخش های کتاب آموزش و راهنمای نرم افزارگوسین ویرایش سوم

فهرست مطالب کتاب

  • Chapter 1 Using Computations in Chemical Research
  • molecules
  • videos & enlarged images
  • cvd images
  • TEXT DISCUSSION
  • basis function types
  • 2,6-DMPNP
  • 3,5-DMPNP
  • fluoroketone compound
  • p-nitrophenol
  • explicit water molecules
  • ONIOM regions
  • EXAMPLE 1.1: MOLECULAR STRUCTURE OF FOOF
  • FOOF
  • Chapter 2 Getting Started with Calculations
  • molecules
  • videos & enlarged images
  • cvd alternate images
  • TEXT DISCUSSION
  • closed vs. open shell orbital occupancies
  • formaldehyde HOMO
  • formaldehyde LUMO
  • GaussView atomic charge display
  • WebMO MO display
  • EXAMPLE 2.1: FORMALDEHYDE ENERGY, MOLECULAR ORBITALS & ATOMIC CHARGES
  • formaldehyde
  • HOMO & LUMO of formaldehyde and ethylene
  • EXAMPLE 2.2: COMPARING FORMALDEHYDE AND ACETONE
  • acetone
  • formaldehyde
  • dipole moment vectors: formaldehyde and acetone
  • EXAMPLE 2.3: 1,2-DICHLORO-1,2-DIFLUOROETHANE CONFORMER ENERGIES
  • 1,2-dichloro-1,2-difluoroethane
  • dipole moment vector: RR form of 1,2-dichloro-1,2-difluoroethane
  • stereoisomers of 1,2-dichloro-1,2-difluoroethane
  • EXAMPLE 2.4: COMPARING CANONICAL & BIORTHOGONALIZED ORBITALS
  • iron oxide cation
  • singly-occupied MOs in 3 substituted ethene radicals
  • EXAMPLE 2.5: SPIN POLARIZATION IN HETEROSUBSTITUTED ETHENE RADICALS
  • ethene
  • singly-occupied MOs in 5 substituted ethene radicals
  • EXAMPLE 2.6: FORMALDEHYDE OPTIMIZATION & FREQUENCY CALCULATION
  • formaldehyde
  • EXAMPLE 2.7: CLEANING VS. OPTIMIZING ANILINE
  • α-tocopherol
  • aniline
  • GV’s Dihedral Angle SmartSlide
  • EXAMPLE 2.8: ACETALDEHYDE/OXIRANE ISOMERIZATION ENERGY
  • acetaldehyde
  • ethylene oxide
  • EXAMPLE 2.9: QM:QM CALCULATIONS ON TWO VITAMIN E STRUCTURES
  • α-tocopherol
  • DHBF
  • EXERCISE 2.1: COMPARING ETHYLENE AND FORMALDEHYDE
  • ethylene
  • formaldehyde
  • EXERCISE 2.2: OPTIMIZING CHROMIUM HEXACARBONYL
  • chromium hexacarbonyl
  • EXERCISE 2.3: ATOMIC CHARGE ANALYSIS FOR DIZINCOCENE
  • dizincocene
  • EXERCISE 2.4: COMPARING ETHYLENE AND FLUOROETHYLENE
  • fluoroethylene
  • EXERCISE 2.5: TWO MORE HETEROSUBSTITUTED ETHENE RADICALS
  • allyl radical
  • vinoxy radical
  • EXERCISE 2.6: THE GROUND STATE OF O2
  • oxygen molecule
  • EXERCISE 2.7: ONIOM CALCULATIONS ON VITAMIN E-RELATED MOLECULES
  • DHBF
  • ADVANCED EXAMPLE 2.10: OXYGEN STABILITY CALCULATIONS
  • oxygen molecule
  • ADVANCED EXERCISE 2.8: OZONE WAVEFUNCTION STABILITYON STABILITY
  • ozone
  • ADVANCED EXERCISE 2.9: BOND ENTHALPIES OF SECOND AND THIRD ROW HYDRIDES
  • electrostatic potential-mapped isodensities for hydride compounds
  • ADVANCED EXERCISE 2.10: BUTANE ENTHALPY OF ISOMERIZATION
  • butane
  • ADVANCED EXERCISE 2.11: MALONALDEHYDE OPTIMIZATION
  • malonaldehyde
  • ADVANCED EXERCISE 2.12: THE PO BOND LENGTH: THE BASIS SET LIMIT
  • phosophorus monoxide
  • ADVANCED EXERCISE 2.14: CPU USAGE BY PROBLEM SIZE
  • alanine
  • Chapter 3 Geometry Optimizations
  • molecules
  • videos & enlarged images
  • cvd alternate images
  • TEXT DISCUSSION
  • ferrocene
  • EXAMPLE 3.1: OPTIMIZING DECAMETHYLZINCOCENENE
  • decamethyldizincocene
  • decamethylzincocene
  • zincocene
  • Optimization of η1η5 decamethylzincocene
  • Optimization of η5η5 decamethylzincocene (D5d)
  • molecules in the vinyl series
  • EXAMPLE 3.2: OPTIMIZING COBALT(III) ACETYLACETONATE
  • cobalt (III) acetylacetonate
  • EXAMPLE 3.3: LOCATING A TRANSITION STRUCTURE WITH QST2
  • hydrogen molecule
  • silane
  • silylene
  • EXAMPLE 3.4: TRANSITION STRUCTURE FOR VINYL AZIDE DECOMPOSITION
  • 3-fluoropropene
  • acetonitrile
  • fluoropropene
  • vinyl azide
  • EXAMPLE 3.5: EXPLORING THE C3H5F POTENTIAL ENERGY SURFACE
  • fluoropropene
  • isomers of 1-fluoropropene
  • normal mode corresponding to imaginary frequency: cis-trans interconversion
  • TS between cis and trans isomers of 1-fluoropropene
  • 1-fluoropropene cis-trans TS imaginary frequency
  • trans 1-fluoropropene (CCCH=180) imaginary frequency
  • EXAMPLE 3.6: AZIDE DECOMPOSITION: CONCERTED vs. STEPWISE MECHANISMS
  • dimethylimine
  • isopropylazide
  • nitrogen molecule
  • vinyl azide decomposition QST3 TS optimization
  • EXERCISE 3.1: COMPARING STRUCTURES IN THE VINYL SERIES
  • ethylene
  • fluoroethylene
  • propene
  • vinyl alcohol
  • vinyl amine
  • vinyl chloride
  • characterizing planar vinyl amine
  • EXERCISE 3.2: COMPARING C60O ISOMERS
  • buckminsterfullerene oxide
  • EXERCISE 3.3: LOCATING A TRANSITION STRUCTURE ON THE GeH4 PES
  • GeH2
  • germane
  • germanium dioxide
  • hydrogen molecule
  • EXERCISE 3.4: MODELING HYDROGEN SHIFTS IN C3H5F
  • fluoropropene
  • completed QST3 input setup
  • fluoropropene compounds involved in 1,3 hydrogen shift
  • GaussView connection editor
  • normal mode corresponding to imaginary frequency: 1,3 hydrogen shift reaction
  • ADVANCED EXAMPLE 3.7: APPROACHES TO THE ACETALDEHYDE-VINYL ALCOHOL TS
  • acetic acid imaginary frequency
  • ADVANCED EXERCISE 3.5: PROTONATION AND PROTON TRANSFERS IN ALLENES
  • 1,1,3,3-tetramethyl-2-propenyl cation
  • 1,1,3,3-tetramethylallene
  • 1,1,3,3-tetramethylallyl cation
  • final energetic results: allenes study
  • ADVANCED EXERCISE 3.6: PERIODIC TRENDS IN TRANSITION METAL COMPLEXES
  • chromium hexacarbonyl
  • molybdenum hexacarbonyl
  • tungsten hexacarbonyl
  • ADVANCED EXERCISE 3.7: HCO(CO)4 ISOMERS
  • hydridocobalt tetracarbonyl
  • ADVANCED EXERCISE 3.8: OPTIMIZING THE BOND LENGTH OF HF
  • hydrogen fluoride
  • ADVANCED EXERCISE 3.9: SEARCHING FOR A SYMMETRIC MINIMUM
  • decamethylzincocene
  • Chapter 4 Predicting Chemical Properties
  • molecules
  • videos & enlarged images
  • cvd images
  • TEXT DISCUSSION
  • contents of various Gaussian-n test sets
  • EXAMPLE 4.1: IR SPECTRUM OF FORMALDEHYDE; RAMAN SPECTRUM OF BENZENE
  • formaldehyde
  • Vibrational modes for formaldehyde
  • EXAMPLE 4.2: DETECTING C60 IN INTERSTELLAR SPACE
  • buckminsterfullerene
  • EXAMPLE 4.3: RAMAN CRIME SOLVING: IDENTIFYING SUBSTANCES ON CURRENCY
  • benzocaine
  • cocaine
  • ring structure of cocaine
  • EXAMPLE 4.4: SUBSTITUTING DEUTERIUM IN FORMALDEHYDE
  • formaldehyde
  • EXAMPLE 4.5: THERMOCHEMISTRY CALCULATIONS ON SMALL MOLECULES
  • ammonia
  • benzene
  • carbon nitride
  • chlorine molecule
  • cyanide
  • EXAMPLE 4.6: USING AND EVALUATING HIGH ACCURACY MODEL CHEMISTRIES
  • ammonia
  • benzene
  • carbon nitride
  • chlorine molecule
  • cyanide
  • methane
  • tetramethylsilane (TMS)
  • EXAMPLE 4.7: 13C NMR EXTREMES: METHANE, BENZENE, METHYL CATION
  • benzene
  • methane
  • methyl cation
  • EXAMPLE 4.8: TRIMETHYLPENTANEDIOL 13C SPECTRUM
  • 2,2,4-trimethyl-1,3-pentanediol
  • EXERCISE 4.1: FREQUENCIES OF STRAINED HYDROCARBONS
  • bicyclohexene
  • bicyclopentane
  • cyclobutene
  • pentaprismane
  • prismane
  • propellane
  • EXERCISE 4.2: CARBONYL STRETCH BY SUBSTITUENT
  • acetaldehyde
  • acetone
  • acetyl chloride
  • acrolein
  • formaldehyde
  • formamide
  • methyl acetate
  • Carbonyl stretch by substituent
  • EXERCISE 4.3: ISOTOPE SUBSTITUTION EFFECTS ON BENZENE’S RAMAN SPECTRUM
  • benzene
  • Benzene normal modes: normal vs. deuterated
  • EXERCISE 4.4: NMR PROPERTIES OF ALKANES, ALKENES AND ALKYNES
  • 2-butene
  • 2-butyne
  • butane
  • EXERCISE 4.5: 13C SHIFTS IN NITROANILINES: A SURPRISE DEVIATION FROM ADDITIVITY
  • 2-nitroaniline
  • alanine
  • EXERCISE 4.6: THE 13C NMR SPECTRUM OF PROPELLANE
  • propellane
  • EXERCISE 4.7: AZULENE/NAPHTHALENE HEAT OF ISOMERIZATION WITH CBS-QB3
  • azulene
  • naphthalene
  • EXERCISE 4.8: COST AND ACCURACY OF CBS-QB3 vs. G3/G4: BENZENE HEAT OF COMBUSTION
  • benzene
  • EXERCISE 4.9: C60O ISOMERS REVISITED
  • buckminsterfullerene oxide
  • EXERCISE 4.10: PROTON NMR OF CHLOROCYCLOHEXANE CONFORMATIONS
  • chlorocyclohexane
  • ADVANCED EXAMPLE 4.9: RAMAN SPECTRA OF SMALL WATER CLUSTERS 1
  • water clusters
  • ADVANCED EXERCISE 4.11: RAMAN SPECTRA OF SMALL WATER CLUSTERS 2
  • water clusters
  • raman intensities for water clusters
  • OH stretching mode in small water cluster
  • ADVANCED EXERCISE 4.12: FORMALDEHYDE ANHARMONIC FREQUENCY ANALYSIS
  • formaldehyde
  • ADVANCED EXERCISE 4.13: ANHARMONIC ANALYSIS OF CARBONYL STRETCH
  • acetaldehyde
  • acetone
  • acetyl chloride
  • acrolein
  • formamide
  • methyl acetate
  • ADVANCED EXERCISE 4.14: PREDICTING NONLINEAR OPTICAL PROPERTIES
  • acetonitrile
  • methyl chloride
  • methyl fluoride
  • ADVANCED EXERCISE 4.15: PREDICTING GAMMA FOR POLYACETYLENES
  • polyacetylene
  • gamma predictions in polyacetylenes
  • ADVANCED EXAMPLE 4.10: THE WAVEFUNCTION FOR THE CN CATION
  • carbon nitride
  • cyanide
  • Chapter 5 Modeling Chemistry in Solution
  • molecules
  • videos & enlarged images
  • cvd images
  • TEXT DISCUSSION
  • comparing cavity shapes
  • explicit water molecules near a protein
  • molecular cavity for solvation calculation
  • EXAMPLE 5.1: METHYL LACTATE CONFORMERS IN METHANOL
  • methyl lactate
  • EXAMPLE 5.2: FORMALDEHYDE IR SPECTRUM IN ACETONITRILE
  • formaldehyde
  • EXAMPLE 5.3: VITAMIN E OXIDATION MODEL IN SOLUTION
  • α-tocopherol
  • DHBF
  • EXAMPLE 5.4: FREE ENERGY OF SOLVATION FOR ACETIC ACID IN CHLOROFORM
  • acetic acid
  • EXERCISE 5.1: FORMALDEHYDE FREQUENCIES IN CYCLOHEXANE
  • formaldehyde
  • EXERCISE 5.2: FURFURALDEHYDE CONFORMERS IN VARIOUS SOLVENTS
  • furfuraldehyde
  • EXERCISE 5.3: METHYL LACTATE IN WATER
  • methyl lactate
  • EXERCISE 5.4: A MENSHUTKIN REACTION
  • ammonia
  • methyl chloride
  • methyl fluoride
  • adjusting the dihedral angle
  • modifying a dihedral angle
  • EXERCISE 5.5: COMPARING FREE ENERGIES OF SOLVATION
  • acetic acid
  • benzamide
  • benzene
  • ethane hexafluoride
  • propene
  • urea
  • ADVANCED EXAMPLE 5.5: METHYL ACETATE HYDROLYSIS WITH EXPLICIT WATERS
  • methyl acetate
  • ADVANCED EXAMPLE 5.6: THE COMPONENTS OF FREE ENERGIES IN SOLUTION
  • methyl acetate
  • Chapter 6 Studying Reaction Mechanisms
  • molecules
  • videos & enlarged images
  • cvd images
  • EXAMPLE 6.1: DIELS-ALDER REGIOSELECTIVITY
  • 1-methoxy-1,3-butadiene
  • acrylonitrile
  • MOs involved in a diehls-alder reaction
  • EXAMPLE 6.2: REACTIVITY OF Al5O4
  • Al5O4 anion
  • MOs of Al5O4–
  • EXAMPLE 6.3: INDANE AND TETRALIN
  • indane
  • tetralin
  • GaussView atom list editor
  • EXAMPLE 6.4: ROTATIONAL ISOMERIZATION IN ALLYL CATION
  • allyl cation
  • allyl cation rotational isomerization TS
  • EXAMPLE 6.5: SCAN CALCULATIONS: ROTATIONAL ISOMERIZATIONN
  • n-methyl-(2-nitrovinyl) amine
  • PES scan of n-methyl-(2-nitrovinyl)amine
  • EXAMPLE 6.6: BOND DISSOCIATION IN METHANE
  • methane
  • HOMO for stretched methane: restricted vs. unrestricted
  • EXAMPLE 6.7: STUDYING THE H2CO POTENTIAL ENERGY SURFACE
  • carbon monoxide
  • formaldehyde
  • hydrogen molecule
  • hydroxycarbene
  • EXAMPLE 6.8: CO2 ENTHALPY OF FORMATION
  • carbon dioxide
  • methane
  • EXAMPLE 6.9: TESTING HESS’S LAW
  • ethane
  • EXERCISE 6.1: ELECTRON DENSITIES OF SUBSTITUTED BENZENES
  • chlorobenzene
  • nitrobenzene
  • EXERCISE 6.2: ROTATIONAL BARRIERS
  • acetophenone
  • frozen dihedral angles
  • EXERCISE 6.3: THE H2CO POTENTIAL ENERGY SURFACE
  • formaldehyde
  • hydroxycarbene
  • EXERCISE 6.4: THE SILICON CATION + SILANE POTENTIAL ENERGY SURFACE
  • silane
  • the silicon cation + silane PES
  • Si+ + Silane hydrogen elimination reaction
  • EXERCISE 6.5: ISODESMIC REACTIONS
  • acetone
  • acetyl chloride
  • acetyl fluoride
  • EXERCISE 6.6: HEAT OF FORMATION FOR TETRAFLUOROSILANEN
  • tetrafluorosilane
  • ADVANCED EXERCISE 6.7: ETHYL ACETATE HYDROLYSIS REVISITED
  • methyl acetate
  • QST3 optimization input: BAC2 mechanism
  • QST3 optimization input: BAL2 mechanism
  • ADVANCED EXAMPLE 6.10: THE O3 POTENTIAL ENERGY SURFACE
  • ozone
  • ADVANCED EXERCISE 6.8: STUDYING KETO-ENOL TAUTOMERISM
  • 2-hydroxypyridine
  • 2-pyridone
  • Keto-enol tautomerization of 2-pyridone and 2-hydroxypyridine
  • ADVANCED EXAMPLE 6.11: A SIMPLE SN2 REACTION
  • methyl chloride
  • methyl fluoride
  • An SN2 reaction
  • IRC from an SN2 reaction
  • ADVANCED EXERCISE 6.9: LEAVING GROUP EFFECTS IN ETHYL HALIDE SN2 REACTIONS
  • acetate anion
  • ethyl acetate
  • ethyl bromide
  • ethyl chloride
  • Chapter 7 Predicting Spectra
  • molecules
  • videos & enlarged images
  • cvd images
  • TEXT DISCUSSION
  • three boltzmann distributions
  • EXAMPLE 7.1: NMR SHIELDING SUBSTITUENT EFFECTS IN SUBSTITUTED ACETYLENES
  • acetylene
  • fluoroacetylene
  • EXAMPLE 7.2: SPIN-SPIN COUPLING CONSTANTS
  • cyclopropane
  • ethylene oxide
  • EXAMPLE 7.3: ABSOLUTE CONFIGURATION OF CAMPHOR
  • camphor
  • chiral centers in camphor
  • EXAMPLE 7.4: VCD SPECTRUM OF DESFLURANE
  • desflurane
  • conformations of desflurane
  • desflurane
  • desflurance scan setup
  • desflurance scan results
  • EXAMPLE 7.5: OBSERVING α-PINENE EPOXIDATION WITH ROA
  • 2,3-pinanediol
  • α-pinene
  • α-pinene oxide
  • EXAMPLE 7.6: EPICHLORHYDRIN ROA SPECTRUM: GAS PHASE VS. CYCLOHEXANE
  • epichlorohydrin
  • EXAMPLE 7.7: MODELING ROA SPECTRA IN WATER
  • methyl-α-D-glucose
  • EXAMPLE 7.8: OPTICAL ROTATIONS: SUBSTITUTED OXIRANES
  • fluorooxirane
  • methyloxirane
  • EXERCISE 7.1: NMR SHIELDING TENSORS: SUBSTITUENT EFFECTS
  • chloroacetylene
  • cyanoacetylene
  • ethenyl-acetylene
  • methylacetylene
  • nitroacetylene
  • silylacetylene
  • trimethylsilane-acetylene
  • EXAMPLE 7.2: SPIN-SPIN COUPLING CONSTANTS
  • cyclopropane
  • ethylene oxide
  • EXAMPLE 7.3: ABSOLUTE CONFIGURATION OF CAMPHOR
  • camphor
  • EXAMPLE 7.4: VCD SPECTRUM OF DESFLURANE
  • desflurane
  • EXAMPLE 7.5: OBSERVING α-PINENE EPOXIDATION WITH ROA
  • 2,3-pinanediol
  • α-pinene
  • α-pinene oxide
  • EXAMPLE 7.6: EPICHLORHYDRIN ROA SPECTRUM: GAS PHASE VS. CYCLOHEXANE
  • epichlorohydrin
  • EXAMPLE 7.7: MODELING ROA SPECTRA IN WATER
  • methyl-α-D-glucose
  • EXAMPLE 7.8: OPTICAL ROTATIONS: SUBSTITUTED OXIRANES
  • fluorooxirane
  • methyloxirane
  • EXERCISE 7.1: NMR SHIELDING TENSORS: SUBSTITUENT EFFECTS
  • chloroacetylene
  • cyanoacetylene
  • ethenyl-acetylene
  • methylacetylene
  • nitroacetylene
  • silylacetylene
  • trimethylsilane-acetylene
  • EXERCISE 7.2: SPIN-SPIN COUPLING CONSTANTS: THREE MEMBERED RING SYSTEMS
  • aziridine
  • propellane
  • silirane
  • thiirane
  • EXERCISE 7.3: SPIN-SPIN COUPLING CONSTANTS: HIGHLY STRAINED SYSTEMS
  • bicyclobutane
  • highly strained systems
  • EXERCISE 7.4: ABSOLUTE CONFIGURATION OF FENCHONE
  • fenchone
  • EXERCISE 7.5: DISTINGUISHING PRODUCTS WITH VCD
  • 3-oxabicyclo[4.3.1]decane-2,8-dione
  • EXERCISE 7.6: (R)-3-METHYLCYCLOHEXANONE VCD SPECTRUM
  • 3-methylcyclohexanone
  • EXERCISE 7.7: α-PINENE OXIDE CONFORMATIONS
  • α-pinene oxide
  • EXERCISE 7.8: CONFORMATION ELUCIDATION OF A CHIRAL DRUG
  • aeroplysinin-1
  • aeroplysinin-1 1S,6R ROA spectrum
  • aeroplysinin-1 1R,6R ROA spectrum
  • aeroplysinin-1 scan 1 setup
  • aeroplysinin-1 scan 2 setup
  • comparing distribution cutoffs
  • EXERCISE 7.9: EPICHLORHYDRIN ROA SPECTRUM IN ACETONITRILE
  • epichlorohydrin
  • EXERCISE 7.10: LACTAMIDE ROA SPECTRUM IN WATER
  • lactamide
  • EXERCISE 7.11: INDUCED CHIRALITY: CAMPHOR VCD SPECTRUM IN CHLOROFORM
  • camphor
  • chloroform
  • EXERCISE 7.12: OPTICAL ROTATIONS: SUBSTITUTED OXIRANES
  • 2-chlorooxirane
  • 2-ethynyloxirane
  • chloroform
  • oxirane-2-carbonitrile
  • optical rotation results: substituted oxiranes
  • EXERCISE 7.13: SOLVENT EFFECTS ON ORD: S-EPICHLOROHYDRON
  • epichlorohydrin
  • ADVANCED EXAMPLE 7.9: 1,1-DIFLUOROPROP-2-YNYL RADICAL
  • 1,1-difluoroprop-2-ynyl radical
  • 1,1-difluoroprop-2-ynyl radical
  • ADVANCED EXERCISE 7.14: PROP-2-YNYL RADICAL HYPERFINE COUPLING
  • prop-2-ynyl radical
  • ADVANCED EXERCISE 7.15: CF+ IN INTERSTELLAR SPACE
  • carbon monofluoride cation
  • ADVANCED EXERCISE 7.16: HYPERFINE COUPLING CONSTANTS: ARSENIC COMPOUNDS
  • arsenic dihydride
  • arsenic dioxide
  • arsinite
  • Chapter 8 Modeling Excited States
  • molecules
  • videos & enlarged images
  • cvd images
  • TEXT DISCUSSION
  • active space for π→π* transition
  • active space for bond breaking
  • MOs in benzene
  • normalized radial probability distributions for hydrogen atom
  • vibration states and excited state transitions
  • EXAMPLE 8.1: BENZENE EXCITATION ENERGIES
  • benzene
  • EXAMPLE 8.2: DYES FOR SOLAR CELLS
  • DSSC device dye
  • HOMO & LUMO for model DSSC dye
  • EXAMPLE 8.3: EXCITED STATES OF V(H2O)6
  • hexaaquavanadium
  • electron density differences in hexaaquavanadium (II) dication
  • NTOs in hexaaquavanadium (II) dication
  • EXAMPLE 8.4: TITANIUM OXIDE EXCITED STATES
  • titanium oxide
  • EXAMPLE 8.5: PLUMERICIN ECD
  • plumericin
  • plumericin ECD
  • EXAMPLE 8.6: DMABN EXCITED STATE GEOMETRY
  • DMABN
  • DMABN MOs: gas phase
  • EXERCISE 8.1: MODELING DYES FOR SOLAR CELLS
  • DSSC device dye
  • electron density difference: plotted and mapped isosurfaces
  • MOs for first excited state
  • EXERCISE 8.2: EXCITED STATES OF VANADIUM-WATER COMPLEXES
  • hexaaquavanadium
  • EXERCISE 8.3: HIGH ACCURACY EXCITED STATES: TITANIUM OXIDE
  • titanium oxide
  • titanium oxide excited states
  • EXERCISE 8.4: ECD RESULTS ANALYZED IN CONJUNCTION WITH VCD AND OR
  • plumericin
  • EXERCISE 8.5: DMABM EXCITED STATE GEOMETRY IN SOLUTION
  • DMABN (dimethylamino-benzonitrile)
  • DMABN MOs: solution
  • EXERCISE 8.6: MODELING FLUORESCENCE OF NANOFIBERS
  • quaterphenyl
  • quaterphenyl-4-amine
  • quaterphenyl-4,4-diamine
  • ADVANCED EXAMPLE 8.7: FRANCK-CONDON ANALYSIS: A UV ABSORPTION SPECTRUM
  • diphenylbutadiene (DPB)
  • ADVANCED EXERCISE 8.7: FRANCK-CONDON ANALYSIS: ACROLEIN
  • acrolein
  • acrolein MOs
  • MOs of DBP
  • ADVANCED EXERCISE 8.8: ABSORPTION SPECTRUM OF ANOTHER DIPHENYL COMPOUND
  • diphenyloctatraene (DPO)
  • ADVANCED EXAMPLE 8.8: STUDYING FLUORESCENCE IN COUMARIN 153
  • coumarin 153
  • ADVANCED EXERCISE 8.9: ACETALDEHYDE ABSORPTION AND EMISSION
  • acetaldehyde
  • ADVANCED EXERCISE 8.10: COUMARIN 153 EMISSION IN DMSO
  • coumarin 153
  • ADVANCED EXERCISE 8.11: ACTIVE SPACE FOR BENZENE
  • benzene
  • active space for benzene
  • ADVANCED EXAMPLE 8.8: BENZENE CASSCF SINGLE POINT ENERGY CALCULATION
  • benzene
  • coumarin 153 MOs
  • ADVANCED EXERCISE 8.12: CASSCF STUDY OF BENZENE→BENZVALENE
  • benzene
  • benzvalene
  • RASSCF active space
  • preliminary scan for conical intersection search
  • structure adjustment for benzvalene optimization
  • TS joining the conical intersection and benzvalene
  • ADVANCED EXERCISE 8.13: RASSCF STUDY OF CYCLOPENTADIENE EXCITED STATES
  • cyclopentadiene
  • Chapter 9 Advanced Modeling Techniques
  • molecules
  • videos & enlarged images
  • cvd images
  • TEXT DISCUSSION
  • PDB search query refinement
  • PDB entry description
  • GaussView PDB file warning
  • MolProbity output
  • TUTORIAL: PREPARING A GAUSSIAN INPUT FILE FOR GFP
  • green fluoroscent protein (GFP)
  • comparing water placement: PDB file vs. dowser
  • terminating the HIS residue
  • EXAMPLE 9.1: THE GEOMETRY OF METAL HEXAFLUORIDE COMPOUNDS
  • iridium hexafluoride
  • platinum hexafluoride
  • tungsten hexafluoride
  • EXAMPLE 9.2: 17O NMR CHEMICAL SHIFTS IN TRANSITION METAL OXO COMPLEXES
  • chromium tetraoxide dianion
  • molybdenum tetraoxide dianion
  • tungsten tetraoxide dianion
  • EXAMPLE 9.3: MODELING METHANE DIMER
  • methane dimer
  • methane dimer PES
  • EXAMPLE 9.4: MODELING PHENOL DIMER
  • phenol dimer
  • EXAMPLE 9.5: NITROGEN MOLECULE AND NITROGEN DIANION
  • nitrogen dianion
  • nitrogen molecule
  • EXAMPLE 9.6: A REACTION INVOLVING RADICAL SPECIES
  • ethylene
  • methyl radical
  • propyl radical
  • EXAMPLE 9.7: MODELING ANTIFERROMAGNETISM IN FERREDOXINS
  • FeS(SCH3)2 anion dimer (ferredoxin model)
  • EXAMPLE 9.8: SCANNING THE POTENTIAL ENERGY SURFACE OF 2,6-PYRIDYNE
  • didehydropyridine
  • EXERCISE 9.1: M-F BOND LENGTHS IN METAL HEXAFLUORIDE COMPOUNDS
  • iridium hexafluoride
  • platinum hexafluoride
  • tungsten hexafluoride
  • EXERCISE 9.2: 17O NMR CHEMICAL SHIFTS IN TRANSITION METAL OXO COMPLEXES
  • iron tetraoxide
  • osmium tetraoxide
  • permanganate
  • rhenate
  • ruthenium tetraoxide
  • technetate
  • EXERCISE 9.3: COUNTERPOISE CORRECTIONS: METHANE DIMER
  • methane dimer
  • methane dimer PES: considering counterpoise corrections
  • EXERCISE 9.4: STUDYING PHENOL DIMER WITH 6–311+G(2d,p)
  • phenol dimer
  • EXERCISE 9.5: OXYGEN MOLECULE AND OXYGEN DICATION
  • oxygen molecule
  • EXERCISE 9.6: METHYL RADICAL ADDITION TO CYANOETHENE
  • cyanobutane radical
  • cyanoethene
  • methyl radical
  • EXERCISE 9.8: MODELING THE BIRADICAL 2,6-PYRIDYNE
  • didehydropyridine
  • 2,6-pyridyne active space
  • 2,6-pyridyne PES scans
  • CAS orbitals for 2,6-pyridyne
  • Chapter 10 The Theoretical Background
  • molecules
  • cvd images
  • additional discussions
  • The Schrödinger Equation
  • The Born-Oppenheimer Approximation
  • EXERCISE 10.1: CALCULATION OF THE HARTREE-FOCK ENERGY
  • water
  • Full vs. Limited Configuration Interaction
  • EXERCISE 10.2: SIZE CONSISTENCY: HELIUM ATOM CLUSTER
  • septahelium
  • Møller-Plesset Perturbation Theory
  • EXERCISE 10.3: CORRELATION ENERGIES OF A WATER MOLECULE
  • water
  • EXERCISE 10.4: PROTON AFFINITY OF METHYL ANION
  • methane
  • methyl anion
  • EXERCISE 10.5: HCN GEOMETRY AND FREQUENCIES
  • hydrogen cyanide
  • The Forms of DFT Functionals
  • EXERCISE 10.6: ARGON DIMER BINDING ENERGY
  • argon dimer
  • argon dimer binding energy
  • EXERCISE 10.7: COMPARING INTEGRATION GRIDS
  • aluminum phosphide
  • silicon hydride
  • Si5H12 and Al4P4

نقد و بررسی‌ها

هنوز دیدگاهی ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “دانلود کتاب راهنما و آموزش نرم افزار گوسین نوشته فورسمن ویرایش 3 + 750 نمونه فایل”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا