- ویرایش :3
- نویسنده: James B. Foresman , AEleen Frisch
- تعداد صفحات: 546 صفحه
- حجم فایل: 41.9 مگابایت
- فرمت: PDF -رنگی
- پیوست: فایل های تمرین های کتاب
دانلود کتاب راهنما و آموزش نرم افزار گوسین نوشته فورسمن ویرایش 3 + 750 نمونه فایل
69,900 تومان
دانلود کتاب راهنما و آموزش نرم افزار گوسین نوشته فورسمن ویرایش 3 + 750 نمونه فایل
کتاب راهنمای برنامه نویسی و کار با نرم افزار گوسین نوشته و تالیف فورسمن و فریش ویرایش 3 سوم با عنوان Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian 3nd Edition از بهترین کتاب های تخصصی و مرجع آموزش گوسین همراه با فایل های و نمونه مثال های تمرین های هر بخش با مشخصات زیر دانلود نمایید.
این کتاب توسط James B. Foresman, AEleen Frisch تالیف و نوشته شده شده است. که به بررسی شیمی با روش های ساختار الکترونیکی با استفاده از نرم افزار گوسین می پردازد.
مشخصات کتاب
- عنوان کتاب: Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian
- فرمت فایل: PDF و رنگی
- حجم فایل فشرده: 41.9 مگابایت
- زبان نوشتاری: انگلیسی
- ویرایش: 3 +754 فایل و مثال های ورودی نرم افزار از مثال و تمرین هر بخش از کتاب
- نویسنده: James B. Foresman , AEleen Frisch
- تعداد صفحات: 546 صفحه
- تعداد فصل ها: 10 فصل
- نحوه دریافت : دانلود فوری و آنی فایل بعد از پرداخت
فهرست مطالب و عناوین بخش های کتاب آموزش و راهنمای نرم افزارگوسین ویرایش سوم
Chapter 1 Using Computations in Chemical Research
molecules
videos & enlarged images
cvd images
TEXT DISCUSSION
basis function types
2,6-DMPNP
3,5-DMPNP
fluoroketone compound
p-nitrophenol
explicit water molecules
ONIOM regions
EXAMPLE 1.1: MOLECULAR STRUCTURE OF FOOF
FOOF
Chapter 2 Getting Started with Calculations
molecules
videos & enlarged images
cvd alternate images
TEXT DISCUSSION
closed vs. open shell orbital occupancies
formaldehyde HOMO
formaldehyde LUMO
GaussView atomic charge display
WebMO MO display
EXAMPLE 2.1: FORMALDEHYDE ENERGY, MOLECULAR ORBITALS & ATOMIC CHARGES
formaldehyde
HOMO & LUMO of formaldehyde and ethylene
EXAMPLE 2.2: COMPARING FORMALDEHYDE AND ACETONE
acetone
formaldehyde
dipole moment vectors: formaldehyde and acetone
EXAMPLE 2.3: 1,2-DICHLORO-1,2-DIFLUOROETHANE CONFORMER ENERGIES
1,2-dichloro-1,2-difluoroethane
dipole moment vector: RR form of 1,2-dichloro-1,2-difluoroethane
stereoisomers of 1,2-dichloro-1,2-difluoroethane
EXAMPLE 2.4: COMPARING CANONICAL & BIORTHOGONALIZED ORBITALS
iron oxide cation
singly-occupied MOs in 3 substituted ethene radicals
EXAMPLE 2.5: SPIN POLARIZATION IN HETEROSUBSTITUTED ETHENE RADICALS
ethene
singly-occupied MOs in 5 substituted ethene radicals
EXAMPLE 2.6: FORMALDEHYDE OPTIMIZATION & FREQUENCY CALCULATION
formaldehyde
EXAMPLE 2.7: CLEANING VS. OPTIMIZING ANILINE
α-tocopherol
aniline
GV’s Dihedral Angle SmartSlide
EXAMPLE 2.8: ACETALDEHYDE/OXIRANE ISOMERIZATION ENERGY
acetaldehyde
ethylene oxide
EXAMPLE 2.9: QM:QM CALCULATIONS ON TWO VITAMIN E STRUCTURES
α-tocopherol
DHBF
EXERCISE 2.1: COMPARING ETHYLENE AND FORMALDEHYDE
ethylene
formaldehyde
EXERCISE 2.2: OPTIMIZING CHROMIUM HEXACARBONYL
chromium hexacarbonyl
EXERCISE 2.3: ATOMIC CHARGE ANALYSIS FOR DIZINCOCENE
dizincocene
EXERCISE 2.4: COMPARING ETHYLENE AND FLUOROETHYLENE
fluoroethylene
EXERCISE 2.5: TWO MORE HETEROSUBSTITUTED ETHENE RADICALS
allyl radical
vinoxy radical
EXERCISE 2.6: THE GROUND STATE OF O2
oxygen molecule
EXERCISE 2.7: ONIOM CALCULATIONS ON VITAMIN E-RELATED MOLECULES
DHBF
ADVANCED EXAMPLE 2.10: OXYGEN STABILITY CALCULATIONS
oxygen molecule
ADVANCED EXERCISE 2.8: OZONE WAVEFUNCTION STABILITYON STABILITY
ozone
ADVANCED EXERCISE 2.9: BOND ENTHALPIES OF SECOND AND THIRD ROW HYDRIDES
electrostatic potential-mapped isodensities for hydride compounds
ADVANCED EXERCISE 2.10: BUTANE ENTHALPY OF ISOMERIZATION
butane
ADVANCED EXERCISE 2.11: MALONALDEHYDE OPTIMIZATION
malonaldehyde
ADVANCED EXERCISE 2.12: THE PO BOND LENGTH: THE BASIS SET LIMIT
phosophorus monoxide
ADVANCED EXERCISE 2.14: CPU USAGE BY PROBLEM SIZE
alanine
Chapter 3 Geometry Optimizations
molecules
videos & enlarged images
cvd alternate images
TEXT DISCUSSION
ferrocene
EXAMPLE 3.1: OPTIMIZING DECAMETHYLZINCOCENENE
decamethyldizincocene
decamethylzincocene
zincocene
Optimization of η1η5 decamethylzincocene
Optimization of η5η5 decamethylzincocene (D5d)
molecules in the vinyl series
EXAMPLE 3.2: OPTIMIZING COBALT(III) ACETYLACETONATE
cobalt (III) acetylacetonate
EXAMPLE 3.3: LOCATING A TRANSITION STRUCTURE WITH QST2
hydrogen molecule
silane
silylene
EXAMPLE 3.4: TRANSITION STRUCTURE FOR VINYL AZIDE DECOMPOSITION
3-fluoropropene
acetonitrile
fluoropropene
vinyl azide
EXAMPLE 3.5: EXPLORING THE C3H5F POTENTIAL ENERGY SURFACE
fluoropropene
isomers of 1-fluoropropene
normal mode corresponding to imaginary frequency: cis-trans interconversion
TS between cis and trans isomers of 1-fluoropropene
1-fluoropropene cis-trans TS imaginary frequency
trans 1-fluoropropene (CCCH=180) imaginary frequency
EXAMPLE 3.6: AZIDE DECOMPOSITION: CONCERTED vs. STEPWISE MECHANISMS
dimethylimine
isopropylazide
nitrogen molecule
vinyl azide decomposition QST3 TS optimization
EXERCISE 3.1: COMPARING STRUCTURES IN THE VINYL SERIES
ethylene
fluoroethylene
propene
vinyl alcohol
vinyl amine
vinyl chloride
characterizing planar vinyl amine
EXERCISE 3.2: COMPARING C60O ISOMERS
buckminsterfullerene oxide
EXERCISE 3.3: LOCATING A TRANSITION STRUCTURE ON THE GeH4 PES
GeH2
germane
germanium dioxide
hydrogen molecule
EXERCISE 3.4: MODELING HYDROGEN SHIFTS IN C3H5F
fluoropropene
completed QST3 input setup
fluoropropene compounds involved in 1,3 hydrogen shift
GaussView connection editor
normal mode corresponding to imaginary frequency: 1,3 hydrogen shift reaction
ADVANCED EXAMPLE 3.7: APPROACHES TO THE ACETALDEHYDE-VINYL ALCOHOL TS
acetic acid imaginary frequency
ADVANCED EXERCISE 3.5: PROTONATION AND PROTON TRANSFERS IN ALLENES
1,1,3,3-tetramethyl-2-propenyl cation
1,1,3,3-tetramethylallene
1,1,3,3-tetramethylallyl cation
final energetic results: allenes study
ADVANCED EXERCISE 3.6: PERIODIC TRENDS IN TRANSITION METAL COMPLEXES
chromium hexacarbonyl
molybdenum hexacarbonyl
tungsten hexacarbonyl
ADVANCED EXERCISE 3.7: HCO(CO)4 ISOMERS
hydridocobalt tetracarbonyl
ADVANCED EXERCISE 3.8: OPTIMIZING THE BOND LENGTH OF HF
hydrogen fluoride
ADVANCED EXERCISE 3.9: SEARCHING FOR A SYMMETRIC MINIMUM
decamethylzincocene
Chapter 4 Predicting Chemical Properties
molecules
videos & enlarged images
cvd images
TEXT DISCUSSION
contents of various Gaussian-n test sets
EXAMPLE 4.1: IR SPECTRUM OF FORMALDEHYDE; RAMAN SPECTRUM OF BENZENE
formaldehyde
Vibrational modes for formaldehyde
EXAMPLE 4.2: DETECTING C60 IN INTERSTELLAR SPACE
buckminsterfullerene
EXAMPLE 4.3: RAMAN CRIME SOLVING: IDENTIFYING SUBSTANCES ON CURRENCY
benzocaine
cocaine
ring structure of cocaine
EXAMPLE 4.4: SUBSTITUTING DEUTERIUM IN FORMALDEHYDE
formaldehyde
EXAMPLE 4.5: THERMOCHEMISTRY CALCULATIONS ON SMALL MOLECULES
ammonia
benzene
carbon nitride
chlorine molecule
cyanide
EXAMPLE 4.6: USING AND EVALUATING HIGH ACCURACY MODEL CHEMISTRIES
ammonia
benzene
carbon nitride
chlorine molecule
cyanide
methane
tetramethylsilane (TMS)
EXAMPLE 4.7: 13C NMR EXTREMES: METHANE, BENZENE, METHYL CATION
benzene
methane
methyl cation
EXAMPLE 4.8: TRIMETHYLPENTANEDIOL 13C SPECTRUM
2,2,4-trimethyl-1,3-pentanediol
EXERCISE 4.1: FREQUENCIES OF STRAINED HYDROCARBONS
bicyclohexene
bicyclopentane
cyclobutene
pentaprismane
prismane
propellane
EXERCISE 4.2: CARBONYL STRETCH BY SUBSTITUENT
acetaldehyde
acetone
acetyl chloride
acrolein
formaldehyde
formamide
methyl acetate
Carbonyl stretch by substituent
EXERCISE 4.3: ISOTOPE SUBSTITUTION EFFECTS ON BENZENE’S RAMAN SPECTRUM
benzene
Benzene normal modes: normal vs. deuterated
EXERCISE 4.4: NMR PROPERTIES OF ALKANES, ALKENES AND ALKYNES
2-butene
2-butyne
butane
EXERCISE 4.5: 13C SHIFTS IN NITROANILINES: A SURPRISE DEVIATION FROM ADDITIVITY
2-nitroaniline
alanine
EXERCISE 4.6: THE 13C NMR SPECTRUM OF PROPELLANE
propellane
EXERCISE 4.7: AZULENE/NAPHTHALENE HEAT OF ISOMERIZATION WITH CBS-QB3
azulene
naphthalene
EXERCISE 4.8: COST AND ACCURACY OF CBS-QB3 vs. G3/G4: BENZENE HEAT OF COMBUSTION
benzene
EXERCISE 4.9: C60O ISOMERS REVISITED
buckminsterfullerene oxide
EXERCISE 4.10: PROTON NMR OF CHLOROCYCLOHEXANE CONFORMATIONS
chlorocyclohexane
ADVANCED EXAMPLE 4.9: RAMAN SPECTRA OF SMALL WATER CLUSTERS 1
water clusters
ADVANCED EXERCISE 4.11: RAMAN SPECTRA OF SMALL WATER CLUSTERS 2
water clusters
raman intensities for water clusters
OH stretching mode in small water cluster
ADVANCED EXERCISE 4.12: FORMALDEHYDE ANHARMONIC FREQUENCY ANALYSIS
formaldehyde
ADVANCED EXERCISE 4.13: ANHARMONIC ANALYSIS OF CARBONYL STRETCH
acetaldehyde
acetone
acetyl chloride
acrolein
formamide
methyl acetate
ADVANCED EXERCISE 4.14: PREDICTING NONLINEAR OPTICAL PROPERTIES
acetonitrile
methyl chloride
methyl fluoride
ADVANCED EXERCISE 4.15: PREDICTING GAMMA FOR POLYACETYLENES
polyacetylene
gamma predictions in polyacetylenes
ADVANCED EXAMPLE 4.10: THE WAVEFUNCTION FOR THE CN CATION
carbon nitride
cyanide
Chapter 5 Modeling Chemistry in Solution
molecules
videos & enlarged images
cvd images
TEXT DISCUSSION
comparing cavity shapes
explicit water molecules near a protein
molecular cavity for solvation calculation
EXAMPLE 5.1: METHYL LACTATE CONFORMERS IN METHANOL
methyl lactate
EXAMPLE 5.2: FORMALDEHYDE IR SPECTRUM IN ACETONITRILE
formaldehyde
EXAMPLE 5.3: VITAMIN E OXIDATION MODEL IN SOLUTION
α-tocopherol
DHBF
EXAMPLE 5.4: FREE ENERGY OF SOLVATION FOR ACETIC ACID IN CHLOROFORM
acetic acid
EXERCISE 5.1: FORMALDEHYDE FREQUENCIES IN CYCLOHEXANE
formaldehyde
EXERCISE 5.2: FURFURALDEHYDE CONFORMERS IN VARIOUS SOLVENTS
furfuraldehyde
EXERCISE 5.3: METHYL LACTATE IN WATER
methyl lactate
EXERCISE 5.4: A MENSHUTKIN REACTION
ammonia
methyl chloride
methyl fluoride
adjusting the dihedral angle
modifying a dihedral angle
EXERCISE 5.5: COMPARING FREE ENERGIES OF SOLVATION
acetic acid
benzamide
benzene
ethane hexafluoride
propene
urea
ADVANCED EXAMPLE 5.5: METHYL ACETATE HYDROLYSIS WITH EXPLICIT WATERS
methyl acetate
ADVANCED EXAMPLE 5.6: THE COMPONENTS OF FREE ENERGIES IN SOLUTION
methyl acetate
Chapter 6 Studying Reaction Mechanisms
molecules
videos & enlarged images
cvd images
EXAMPLE 6.1: DIELS-ALDER REGIOSELECTIVITY
1-methoxy-1,3-butadiene
acrylonitrile
MOs involved in a diehls-alder reaction
EXAMPLE 6.2: REACTIVITY OF Al5O4
Al5O4 anion
MOs of Al5O4–
EXAMPLE 6.3: INDANE AND TETRALIN
indane
tetralin
GaussView atom list editor
EXAMPLE 6.4: ROTATIONAL ISOMERIZATION IN ALLYL CATION
allyl cation
allyl cation rotational isomerization TS
EXAMPLE 6.5: SCAN CALCULATIONS: ROTATIONAL ISOMERIZATIONN
n-methyl-(2-nitrovinyl) amine
PES scan of n-methyl-(2-nitrovinyl)amine
EXAMPLE 6.6: BOND DISSOCIATION IN METHANE
methane
HOMO for stretched methane: restricted vs. unrestricted
EXAMPLE 6.7: STUDYING THE H2CO POTENTIAL ENERGY SURFACE
carbon monoxide
formaldehyde
hydrogen molecule
hydroxycarbene
EXAMPLE 6.8: CO2 ENTHALPY OF FORMATION
carbon dioxide
methane
EXAMPLE 6.9: TESTING HESS’S LAW
ethane
EXERCISE 6.1: ELECTRON DENSITIES OF SUBSTITUTED BENZENES
chlorobenzene
nitrobenzene
EXERCISE 6.2: ROTATIONAL BARRIERS
acetophenone
frozen dihedral angles
EXERCISE 6.3: THE H2CO POTENTIAL ENERGY SURFACE
formaldehyde
hydroxycarbene
EXERCISE 6.4: THE SILICON CATION + SILANE POTENTIAL ENERGY SURFACE
silane
the silicon cation + silane PES
Si+ + Silane hydrogen elimination reaction
EXERCISE 6.5: ISODESMIC REACTIONS
acetone
acetyl chloride
acetyl fluoride
EXERCISE 6.6: HEAT OF FORMATION FOR TETRAFLUOROSILANEN
tetrafluorosilane
ADVANCED EXERCISE 6.7: ETHYL ACETATE HYDROLYSIS REVISITED
methyl acetate
QST3 optimization input: BAC2 mechanism
QST3 optimization input: BAL2 mechanism
ADVANCED EXAMPLE 6.10: THE O3 POTENTIAL ENERGY SURFACE
ozone
ADVANCED EXERCISE 6.8: STUDYING KETO-ENOL TAUTOMERISM
2-hydroxypyridine
2-pyridone
Keto-enol tautomerization of 2-pyridone and 2-hydroxypyridine
ADVANCED EXAMPLE 6.11: A SIMPLE SN2 REACTION
methyl chloride
methyl fluoride
An SN2 reaction
IRC from an SN2 reaction
ADVANCED EXERCISE 6.9: LEAVING GROUP EFFECTS IN ETHYL HALIDE SN2 REACTIONS
acetate anion
ethyl acetate
ethyl bromide
ethyl chloride
Chapter 7 Predicting Spectra
molecules
videos & enlarged images
cvd images
TEXT DISCUSSION
three boltzmann distributions
EXAMPLE 7.1: NMR SHIELDING SUBSTITUENT EFFECTS IN SUBSTITUTED ACETYLENES
acetylene
fluoroacetylene
EXAMPLE 7.2: SPIN-SPIN COUPLING CONSTANTS
cyclopropane
ethylene oxide
EXAMPLE 7.3: ABSOLUTE CONFIGURATION OF CAMPHOR
camphor
chiral centers in camphor
EXAMPLE 7.4: VCD SPECTRUM OF DESFLURANE
desflurane
conformations of desflurane
desflurane
desflurance scan setup
desflurance scan results
EXAMPLE 7.5: OBSERVING α-PINENE EPOXIDATION WITH ROA
2,3-pinanediol
α-pinene
α-pinene oxide
EXAMPLE 7.6: EPICHLORHYDRIN ROA SPECTRUM: GAS PHASE VS. CYCLOHEXANE
epichlorohydrin
EXAMPLE 7.7: MODELING ROA SPECTRA IN WATER
methyl-α-D-glucose
EXAMPLE 7.8: OPTICAL ROTATIONS: SUBSTITUTED OXIRANES
fluorooxirane
methyloxirane
EXERCISE 7.1: NMR SHIELDING TENSORS: SUBSTITUENT EFFECTS
chloroacetylene
cyanoacetylene
ethenyl-acetylene
methylacetylene
nitroacetylene
silylacetylene
trimethylsilane-acetylene
EXAMPLE 7.2: SPIN-SPIN COUPLING CONSTANTS
cyclopropane
ethylene oxide
EXAMPLE 7.3: ABSOLUTE CONFIGURATION OF CAMPHOR
camphor
EXAMPLE 7.4: VCD SPECTRUM OF DESFLURANE
desflurane
EXAMPLE 7.5: OBSERVING α-PINENE EPOXIDATION WITH ROA
2,3-pinanediol
α-pinene
α-pinene oxide
EXAMPLE 7.6: EPICHLORHYDRIN ROA SPECTRUM: GAS PHASE VS. CYCLOHEXANE
epichlorohydrin
EXAMPLE 7.7: MODELING ROA SPECTRA IN WATER
methyl-α-D-glucose
EXAMPLE 7.8: OPTICAL ROTATIONS: SUBSTITUTED OXIRANES
fluorooxirane
methyloxirane
EXERCISE 7.1: NMR SHIELDING TENSORS: SUBSTITUENT EFFECTS
chloroacetylene
cyanoacetylene
ethenyl-acetylene
methylacetylene
nitroacetylene
silylacetylene
trimethylsilane-acetylene
EXERCISE 7.2: SPIN-SPIN COUPLING CONSTANTS: THREE MEMBERED RING SYSTEMS
aziridine
propellane
silirane
thiirane
EXERCISE 7.3: SPIN-SPIN COUPLING CONSTANTS: HIGHLY STRAINED SYSTEMS
bicyclobutane
highly strained systems
EXERCISE 7.4: ABSOLUTE CONFIGURATION OF FENCHONE
fenchone
EXERCISE 7.5: DISTINGUISHING PRODUCTS WITH VCD
3-oxabicyclo[4.3.1]decane-2,8-dione
EXERCISE 7.6: (R)-3-METHYLCYCLOHEXANONE VCD SPECTRUM
3-methylcyclohexanone
EXERCISE 7.7: α-PINENE OXIDE CONFORMATIONS
α-pinene oxide
EXERCISE 7.8: CONFORMATION ELUCIDATION OF A CHIRAL DRUG
aeroplysinin-1
aeroplysinin-1 1S,6R ROA spectrum
aeroplysinin-1 1R,6R ROA spectrum
aeroplysinin-1 scan 1 setup
aeroplysinin-1 scan 2 setup
comparing distribution cutoffs
EXERCISE 7.9: EPICHLORHYDRIN ROA SPECTRUM IN ACETONITRILE
epichlorohydrin
EXERCISE 7.10: LACTAMIDE ROA SPECTRUM IN WATER
lactamide
EXERCISE 7.11: INDUCED CHIRALITY: CAMPHOR VCD SPECTRUM IN CHLOROFORM
camphor
chloroform
EXERCISE 7.12: OPTICAL ROTATIONS: SUBSTITUTED OXIRANES
2-chlorooxirane
2-ethynyloxirane
chloroform
oxirane-2-carbonitrile
optical rotation results: substituted oxiranes
EXERCISE 7.13: SOLVENT EFFECTS ON ORD: S-EPICHLOROHYDRON
epichlorohydrin
ADVANCED EXAMPLE 7.9: 1,1-DIFLUOROPROP-2-YNYL RADICAL
1,1-difluoroprop-2-ynyl radical
1,1-difluoroprop-2-ynyl radical
ADVANCED EXERCISE 7.14: PROP-2-YNYL RADICAL HYPERFINE COUPLING
prop-2-ynyl radical
ADVANCED EXERCISE 7.15: CF+ IN INTERSTELLAR SPACE
carbon monofluoride cation
ADVANCED EXERCISE 7.16: HYPERFINE COUPLING CONSTANTS: ARSENIC COMPOUNDS
arsenic dihydride
arsenic dioxide
arsinite
Chapter 8 Modeling Excited States
molecules
videos & enlarged images
cvd images
TEXT DISCUSSION
active space for π→π* transition
active space for bond breaking
MOs in benzene
normalized radial probability distributions for hydrogen atom
vibration states and excited state transitions
EXAMPLE 8.1: BENZENE EXCITATION ENERGIES
benzene
EXAMPLE 8.2: DYES FOR SOLAR CELLS
DSSC device dye
HOMO & LUMO for model DSSC dye
EXAMPLE 8.3: EXCITED STATES OF V(H2O)6
hexaaquavanadium
electron density differences in hexaaquavanadium (II) dication
NTOs in hexaaquavanadium (II) dication
EXAMPLE 8.4: TITANIUM OXIDE EXCITED STATES
titanium oxide
EXAMPLE 8.5: PLUMERICIN ECD
plumericin
plumericin ECD
EXAMPLE 8.6: DMABN EXCITED STATE GEOMETRY
DMABN
DMABN MOs: gas phase
EXERCISE 8.1: MODELING DYES FOR SOLAR CELLS
DSSC device dye
electron density difference: plotted and mapped isosurfaces
MOs for first excited state
EXERCISE 8.2: EXCITED STATES OF VANADIUM-WATER COMPLEXES
hexaaquavanadium
EXERCISE 8.3: HIGH ACCURACY EXCITED STATES: TITANIUM OXIDE
titanium oxide
titanium oxide excited states
EXERCISE 8.4: ECD RESULTS ANALYZED IN CONJUNCTION WITH VCD AND OR
plumericin
EXERCISE 8.5: DMABM EXCITED STATE GEOMETRY IN SOLUTION
DMABN (dimethylamino-benzonitrile)
DMABN MOs: solution
EXERCISE 8.6: MODELING FLUORESCENCE OF NANOFIBERS
quaterphenyl
quaterphenyl-4-amine
quaterphenyl-4,4-diamine
ADVANCED EXAMPLE 8.7: FRANCK-CONDON ANALYSIS: A UV ABSORPTION SPECTRUM
diphenylbutadiene (DPB)
ADVANCED EXERCISE 8.7: FRANCK-CONDON ANALYSIS: ACROLEIN
acrolein
acrolein MOs
MOs of DBP
ADVANCED EXERCISE 8.8: ABSORPTION SPECTRUM OF ANOTHER DIPHENYL COMPOUND
diphenyloctatraene (DPO)
ADVANCED EXAMPLE 8.8: STUDYING FLUORESCENCE IN COUMARIN 153
coumarin 153
ADVANCED EXERCISE 8.9: ACETALDEHYDE ABSORPTION AND EMISSION
acetaldehyde
ADVANCED EXERCISE 8.10: COUMARIN 153 EMISSION IN DMSO
coumarin 153
ADVANCED EXERCISE 8.11: ACTIVE SPACE FOR BENZENE
benzene
active space for benzene
ADVANCED EXAMPLE 8.8: BENZENE CASSCF SINGLE POINT ENERGY CALCULATION
benzene
coumarin 153 MOs
ADVANCED EXERCISE 8.12: CASSCF STUDY OF BENZENE→BENZVALENE
benzene
benzvalene
RASSCF active space
preliminary scan for conical intersection search
structure adjustment for benzvalene optimization
TS joining the conical intersection and benzvalene
ADVANCED EXERCISE 8.13: RASSCF STUDY OF CYCLOPENTADIENE EXCITED STATES
cyclopentadiene
Chapter 9 Advanced Modeling Techniques
molecules
videos & enlarged images
cvd images
TEXT DISCUSSION
PDB search query refinement
PDB entry description
GaussView PDB file warning
MolProbity output
TUTORIAL: PREPARING A GAUSSIAN INPUT FILE FOR GFP
green fluoroscent protein (GFP)
comparing water placement: PDB file vs. dowser
terminating the HIS residue
EXAMPLE 9.1: THE GEOMETRY OF METAL HEXAFLUORIDE COMPOUNDS
iridium hexafluoride
platinum hexafluoride
tungsten hexafluoride
EXAMPLE 9.2: 17O NMR CHEMICAL SHIFTS IN TRANSITION METAL OXO COMPLEXES
chromium tetraoxide dianion
molybdenum tetraoxide dianion
tungsten tetraoxide dianion
EXAMPLE 9.3: MODELING METHANE DIMER
methane dimer
methane dimer PES
EXAMPLE 9.4: MODELING PHENOL DIMER
phenol dimer
EXAMPLE 9.5: NITROGEN MOLECULE AND NITROGEN DIANION
nitrogen dianion
nitrogen molecule
EXAMPLE 9.6: A REACTION INVOLVING RADICAL SPECIES
ethylene
methyl radical
propyl radical
EXAMPLE 9.7: MODELING ANTIFERROMAGNETISM IN FERREDOXINS
FeS(SCH3)2 anion dimer (ferredoxin model)
EXAMPLE 9.8: SCANNING THE POTENTIAL ENERGY SURFACE OF 2,6-PYRIDYNE
didehydropyridine
EXERCISE 9.1: M-F BOND LENGTHS IN METAL HEXAFLUORIDE COMPOUNDS
iridium hexafluoride
platinum hexafluoride
tungsten hexafluoride
EXERCISE 9.2: 17O NMR CHEMICAL SHIFTS IN TRANSITION METAL OXO COMPLEXES
iron tetraoxide
osmium tetraoxide
permanganate
rhenate
ruthenium tetraoxide
technetate
EXERCISE 9.3: COUNTERPOISE CORRECTIONS: METHANE DIMER
methane dimer
methane dimer PES: considering counterpoise corrections
EXERCISE 9.4: STUDYING PHENOL DIMER WITH 6–311+G(2d,p)
phenol dimer
EXERCISE 9.5: OXYGEN MOLECULE AND OXYGEN DICATION
oxygen molecule
EXERCISE 9.6: METHYL RADICAL ADDITION TO CYANOETHENE
cyanobutane radical
cyanoethene
methyl radical
EXERCISE 9.8: MODELING THE BIRADICAL 2,6-PYRIDYNE
didehydropyridine
2,6-pyridyne active space
2,6-pyridyne PES scans
CAS orbitals for 2,6-pyridyne
Chapter 10 The Theoretical Background
molecules
cvd images
additional discussions
The Schrödinger Equation
The Born-Oppenheimer Approximation
EXERCISE 10.1: CALCULATION OF THE HARTREE-FOCK ENERGY
water
Full vs. Limited Configuration Interaction
EXERCISE 10.2: SIZE CONSISTENCY: HELIUM ATOM CLUSTER
septahelium
Møller-Plesset Perturbation Theory
EXERCISE 10.3: CORRELATION ENERGIES OF A WATER MOLECULE
water
EXERCISE 10.4: PROTON AFFINITY OF METHYL ANION
methane
methyl anion
EXERCISE 10.5: HCN GEOMETRY AND FREQUENCIES
hydrogen cyanide
The Forms of DFT Functionals
EXERCISE 10.6: ARGON DIMER BINDING ENERGY
argon dimer
argon dimer binding energy
EXERCISE 10.7: COMPARING INTEGRATION GRIDS
aluminum phosphide
silicon hydride
Si5H12 and Al4P4
نقد و بررسیها
هنوز بررسیای ثبت نشده است.