دانلود کتاب ضروریات شیمی محاسباتی: نظریه ها و مدل ها تالیف Cramer ویرایش 2

99,000 تومان

  • ویرایش: 2
  • نویسنده: کریستوفر کرامر
  • تعداد صفحات: 607 صفحه
  • حجم فایل: 3.22 مگابایت
  • فرمت: PDF

دانلود کتاب ضروریات شیمی محاسباتی: نظریه ها و مدل ها تالیف Cramer ویرایش 2 کتاب ملزومات و ضروریات شیمی محاسباتی : نظریه ها ، تئوری و مدل ها ویرایش 2 دوم Essentials of Computational Chemistry: Theories and Models, 2nd Edition نوشته و تالیف کریستوفر جی کرامر Christopher J. Cramer یکی از کتاب های تخصصی و مرجع در زمینه شیمی محاسباتی است که به طور کامل و جامع تمامی مفاهیم و نظریه ها و مدل های موجود در شیمی محاسباتی پرداخته و آن ها را همراه با مثال ها و تمرین ها متعدد آموزش داده است.

این کتاب برای دانشجویان شیمی محاسباتی و کسانی که می خواهند از پایه شیمی محاسباتی را به خوبی فرا گیرند بسیار مفید بوده و توصیه می شود.

 

مشخصات کتاب

  • عنوان انگلیسی: Essentials of Computational Chemistry: Theories and Models
  • عنوان فارسی : ملزومات شیمی محاسباتی : نظریه ها و مدل ها
  • فرمت فایل: PDF با کیفیت بالا
  • حجم فایل فشرده:  3.22 مگابایت
  • ویرایش: 2
  • سال انتشار: 2004
  • شابک: 9780470091821, 0470091827
  • زبان نوشتاری: انگلیسی
  • نویسنده(ها): Christopher J. Cramer
  • تعداد صفحات کتاب: 607 صفحه
  • تعداد فصل ها: 15 فصل

 

فهرست مطالب و عناوین فصل های کتاب

  • 1. What are Theory, Computation, and Modeling?
  • 1.1 Definition of Terms.
  • 1.2 Quantum Mechanics.
  • 1.3 Computable Quantities.
  • 1.3.1 Structure.
  • 1.3.2 Potential Energy Surfaces.
  • 1.3.3 Chemical Properties.
  • 1.4 Cost and Efficiency.
  • 1.4.1 Intrinsic Value.
  • 1.4.2 Hardware and Software.
  • 1.4.3 Algorithms.
  • 1.5 Note on Units.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 2.   Molecular Mechanics.
  • 2.1 History and Fundamental Assumptions.
  • 2.2 Potential Energy Functional Forms.
  • 2.2.1 Bond Stretching.
  • 2.2.2 Valence Angle Bending.
  • 2.2.3 Torsions.
  • 2.2.4 van der Waals Interactions.
  • 2.2.5 Electrostatic Interactions.
  • 2.2.6 Cross Terms and Additional Non-bonded Terms.
  • 2.2.7 Parameterization Strategies.
  • 2.3 Force-field Energies and Thermodynamics.
  • 2.4 Geometry Optimization.
  • 2.4.1 Optimization Algorithms.
  • 2.4.2 Optimization Aspects Specific to Force Fields.
  • 2.5 Menagerie of Modern Force Fields.
  • 2.5.1 Available Force Fields.
  • 2.5.2 Validation.
  • 2.6 Force Fields and Docking.
  • 2.7 Case Study: (2R*,4S*)-1-Hydroxy-2,4-dimethylhex-5-ene.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 3. Simulations of Molecular Ensembles.
  • 3.1 Relationship Between MM Optima and Real Systems.
  • 3.2 Phase Space and Trajectories.
  • 3.2.1 Properties as Ensemble Averages.
  • 3.2.2 Properties as Time Averages of Trajectories.
  • 3.3 Molecular Dynamics.
  • 3.3.1 Harmonic Oscillator Trajectories.
  • 3.3.2 Non-analytical Systems.
  • 3.3.3 Practical Issues in Propagation.
  • 3.3.4 Stochastic Dynamics.
  • 3.4 Monte Carlo.
  • 3.4.1 Manipulation of Phase-space Integrals.
  • 3.4.2 Metropolis Sampling.
  • 3.5 Ensemble and Dynamical Property Examples.
  • 3.6 Key Details in Formalism.
  • 3.6.1 Cutoffs and Boundary Conditions.
  • 3.6.2 Polarization.
  • 3.6.3 Control of System Variables.
  • 3.6.4 Simulation Convergence.
  • 3.6.5 The Multiple Minima Problem.
  • 3.7 Force Field Performance in Simulations.
  • 3.8 Case Study: Silica Sodalite.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 4. Foundations of Molecular Orbital Theory.
  • 4.1 Quantum Mechanics and the Wave Function.
  • 4.2 The Hamiltonian Operator.
  • 4.2.1 General Features.
  • 4.2.2 The Variational Principle.
  • 4.2.3 The Born-Oppenheimer Approximation.
  • 4.3 Construction of Trial Wave Functions.
  • 4.3.1 The LCAO Basis Set Approach.
  • 4.3.2 The Secular Equation.
  • 4.4 H¨uckel Theory.
  • 4.4.1 Fundamental Principles.
  • 4.4.2 Application to the Allyl System.
  • 4.5 Many-electron Wave Functions.
  • 4.5.1 Hartree-product Wave Functions.
  • 4.5.2 The Hartree Hamiltonian.
  • 4.5.3 Electron Spin and Antisymmetry.
  • 4.5.4 Slater Determinants.
  • 4.5.5 The Hartree-Fock Self-consistent Field Method.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 5. Semiempirical Implementations of Molecular Orbital Theory..
  • 5.1 Semiempirical Philosophy.
  • 5.1.1 Chemically Virtuous Approximations.
  • 5.1.2 Analytic Derivatives.
  • 5.2 Extended Hückel Theory.
  • 5.3 CNDO Formalism.
  • 5.4 INDO Formalism.
  • 5.4.1 INDO and INDO/S.
  • 5.4.2 MINDO/3 and SINDO1.
  • 5.5 Basic NDDO Formalism.
  • 5.5.1 MNDO.
  • 5.5.2 AM1.
  • 5.5.3 PM3.
  • 5.6 General Performance Overview of Basic NDDO Models.
  • 5.6.1 Energetics.
  • 5.6.2 Geometries.
  • 5.6.3 Charge Distributions.
  • 5.7 Ongoing Developments in Semiempirical MO Theory.
  • 5.7.1 Use of Semiempirical Properties in SAR.
  • 5.7.2 d Orbitals in NDDO Models.
  • 5.7.3 SRP Models.
  • 5.7.4 Linear Scaling.
  • 5.7.5 Other Changes Functional Form.
  • 5.8 Case Study: Asymmetric Alkylation of Benzaldehyde.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 6. Ab Initio Implementations of Hartree-Fock Molecular Orbital.
  • Theory.
  • 6.1 Ab Initio Philosophy.
  • 6.2 Basis Sets.
  • 6.2.1 Functional Forms.
  • 6.2.2 Contracted Gaussian Functions.
  • 6.2.3 Single-ζ, Multiple-ζ, and Split-Valence.
  • 6.2.4 Polarization Functions.
  • 6.2.5 Diffuse Functions.
  • 6.2.6 The HF Limit.
  • 6.2.7 Effective Core Potentials.
  • 6.2.8 Sources.
  • 6.3 Key Technical and Practical Points of Hartree-Fock Theory.
  • 6.3.1 SCF Convergence.
  • 6.3.2 Symmetry.
  • 6.3.3 Open-shell Systems.
  • 6.3.4 Efficiency of Implementation and Use.
  • 6.4 General Performance Overview of Ab Initio HF Theory.
  • 6.4.1 Energetics.
  • 6.4.2 Geometries.
  • 6.4.3 Charge Distributions.
  • 6.5 Case Study: Polymerization of 4-Substituted Aromatic Enynes.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 7. Including Electron Correlation in Molecular Orbital Theory.
  • 7.1 Dynamical vs. Non-dynamical Electron Correlation.
  • 7.2 Multiconfiguration Self-Consistent Field Theory.
  • 7.2.1 Conceptual Basis.
  • 7.2.2 Active Space Specification.
  • 7.2.3 Full Configuration Interaction.
  • 7.3 Configuration Interaction.
  • 7.3.1 Single-determinant Reference.
  • 7.3.2 Multireference.
  • 7.4 Perturbation Theory.
  • 7.4.1 General Principles.
  • 7.4.2 Single-reference.
  • 7.4.3 Multireference.
  • 7.4.4 First-order Perturbation Theory for Some Relativistic Effects.
  • 7.5 Coupled-cluster Theory.
  • 7.6 Practical Issues in Application.
  • 7.6.1 Basis Set Convergence.
  • 7.6.2 Sensitivity to Reference Wave Function.
  • 7.6.3 Price/Performance Summary.
  • 7.7 Parameterized Methods.
  • 7.7.1 Scaling Correlation Energies.
  • 7.7.2 Extrapolation.
  • 7.7.3 Multilevel Methods.
  • 7.8 Case Study: Ethylenedione Radical Anion.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 8. Density Functional Theory.
  • 8.1 Theoretical Motivation.
  • 8.1.1 Philosophy.
  • 8.1.2 Early Approximations.
  • 8.2 Rigorous Foundation.
  • 8.2.1 The Hohenberg-Kohn Existence Theorem.
  • 8.2.2 The Hohenberg-Kohn Variational Theorem.
  • 8.3 Kohn-Sham Self-consistent Field Methodology.
  • 8.4 Exchange-correlation Functionals.
  • 8.4.1 Local Density Approximation.
  • 8.4.2 Density Gradient and Kinetic Energy Density Corrections.
  • 8.4.3 Adiabatic Connection Methods.
  • 8.4.4 Semiempirical DFT.
  • 8.5 Advantages and Disadvantages of DFT Compared to MO Theory.
  • 8.5.1 Densities vs. Wave Functions.
  • 8.5.2 Computational Efficiency.
  • 8.5.3 Limitations of the KS Formalism.
  • 8.5.4 Systematic Improvability.
  • 8.5.5 Worst-case Scenarios.
  • 8.6 General Performance Overview of DFT.
  • 8.6.1 Energetics.
  • 8.6.2 Geometries.
  • 8.6.3 Charge Distributions.
  • 8.7 Case Study: Transition-Metal Catalyzed Carbonylation of Methanol.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 9. Charge Distribution and Spectroscopic Properties.
  • 9.1 Properties Related to Charge Distribution.
  • 9.1.1 Electric Multipole Moments.
  • 9.1.2 Molecular Electrostatic Potential.
  • 9.1.3 Partial Atomic Charges.
  • 9.1.4 Total Spin.
  • 9.1.5 Polarizability and Hyperpolarizability.
  • 9.1.6 ESR Hyperfine Coupling Constants.
  • 9.2 Ionization Potentials and Electron Affinities.
  • 9.3 Spectroscopy of Nuclear Motion.
  • 9.3.1 Rotational.
  • 9.3.2 Vibrational.
  • 9.4 NMR Spectral Properties.
  • 9.4.1 Technical Issues.
  • 9.4.2 Chemical Shifts and Spin-spin Coupling Constants.
  • 9.5 Case Study: Matrix Isolation of Perfluorinated p-Benzyne.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 10. Thermodynamic Properties.
  • 10.1 Microscopic-macroscopic Connection.
  • 10.2 Zero-point Vibrational Energy.
  • 10.3 Ensemble Properties and Basic Statistical Mechanics.
  • 10.3.1 Ideal Gas Assumption.
  • 10.3.2 Separability of Energy Components.
  • 10.3.3 Molecular Electronic Partition Function.
  • 10.3.4 Molecular Translational Partition Function.
  • 10.3.5 Molecular Rotational Partition Function.
  • 10.3.6 Molecular Vibrational Partition Function.
  • 10.4 Standard-state Heats and Free Energies of Formation and Reaction.
  • 10.4.1 Direct Computation.
  • 10.4.2 Parametric Improvement.
  • 10.4.3 Isodesmic Equations.
  • 10.5 Technical Caveats.
  • 10.5.1 Semiempirical Heats of Formation.
  • 10.5.2 Low-frequency Motions.
  • 10.5.3 Equilibrium Populations over Multiple Minima.
  • 10.5.4 Standard-state Conversions.
  • 10.5.5 Standard-state Free Energies, Equilibrium Constants, and Concentrations.
  • 10.6 Case Study: Heat of Formation of H2NOH.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 11. Implicit Models for Condensed Phases.
  • 11.1 Condensed-phase Effects on Structure and Reactivity.
  • 11.1.1 Free Energy of Transfer and Its Physical Components.
  • 11.1.2 Solvation as It Affects Potential Energy Surfaces.
  • 11.2 Electrostatic Interactions with a Continuum.
  • 11.2.1 The Poisson Equation.
  • 11.2.2 Generalized Born.
  • 11.2.3 Conductor-like Screening Model.
  • 11.3 Continuum Models for Non-electrostatic Interactions.
  • 11.3.1 Specific Component Models.
  • 11.3.2 Atomic Surface Tensions.
  • 11.4 Strengths and Weaknesses of Continuum Solvation Models.
  • 11.4.1 General Performance for Solvation Free Energies.
  • 11.4.2 Partitioning.
  • 11.4.3 Non-isotropic Media.
  • 11.4.4 Potentials of Mean Force and Solvent Structure.
  • 11.4.5 Molecular Dynamics with Implicit Solvent.
  • 11.4.6 Equilibrium vs. Non-equilibrium Solvation.
  • 11.5 Case Study: Aqueous Reductive Dechlorination of Hexachloroethane.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 12. Explicit Models for Condensed Phases.
  • 12.1 Motivation.
  • 12.2 Computing Free-energy Differences.
  • 12.2.1 Raw Differences.
  • 12.2.2 Free-energy Perturbation.
  • 12.2.3 Slow Growth and Thermodynamic Integration.
  • 12.2.4 Free-energy Cycles.
  • 12.2.5 Potentials of Mean Force.
  • 12.2.6 Technical Issues and Error Analysis.
  • 12.3 Other Thermodynamic Properties.
  • 12.4 Solvent Models.
  • 12.4.1 Classical Models.
  • 12.4.2 Quantal Models.
  • 12.5 Relative Merits of Explicit and Implicit Solvent Models.
  • 12.5.1 Analysis of Solvation Shell Structure and Energetics.
  • 12.5.2 Speed/Efficiency.
  • 12.5.3 Non-equilibrium Solvation.
  • 12.5.4 Mixed Explicit/Implicit Models.
  • 12.6 Case Study: Binding of Biotin Analogs to Avidin.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 13. Hybrid Quantal/Classical Models.
  • 13.1 Motivation.
  • 13.2 Boundaries Through Space.
  • 13.2.1 Unpolarized Interactions.
  • 13.2.2 Polarized QM/Unpolarized MM.
  • 13.2.3 Fully Polarized Interactions.
  • 13.3 Boundaries Through Bonds.
  • 13.3.1 Linear Combinations of Model Compounds.
  • 13.3.2 Link Atoms.
  • 13.3.3 Frozen Orbitals.
  • 13.4 Empirical Valence Bond Methods.
  • 13.4.1 Potential Energy Surfaces.
  • 13.4.2 Following Reaction Paths.
  • 13.4.3 Generalization to QM/MM.
  • 13.5 Case Study: Catalytic Mechanism of Yeast Enolase.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 14. Excited Electronic States.
  • 14.1 Determinantal/Configurational Representation of Excited States.
  • 14.2 Singly Excited States.
  • 14.2.1 SCF Applicability.
  • 14.2.2 CI Singles.
  • 14.2.3 Rydberg States.
  • 14.3 General Excited State Methods.
  • 14.3.1 Higher Roots in MCSCF and CI Calculations.
  • 14.3.2 Propagator Methods and Time-dependent DFT.
  • 14.4 Sum and Projection Methods.
  • 14.5 Transition Probabilities.
  • 14.6 Solvatochromism.
  • 14.7 Case Study: Organic Light Emitting Diode Alq3.
  • Bibliography and Suggested Additional Reading.
  • References.
  • 15. Adiabatic Reaction Dynamics.
  • 15.1 Reaction Kinetics and Rate Constants.
  • 15.1.1 Unimolecular Reactions.
  • 15.1.2 Bimolecular Reactions.
  • 15.2 Reaction Paths and Transition States.
  • 15.3 Transition-state Theory.
  • 15.3.1 Canonical Equation.
  • 15.3.2 Variational Transition-state Theory.
  • 15.3.3 Quantum Effects on the Rate Constant.
  • 15.4 Condensed-phase Dynamics.
  • 15.5 Non-adiabatic Dynamics.
  • 15.5.1 General Surface Crossings.
  • 15.5.2 Marcus Theory.
  • 15.6 Case Study: Isomerization of Propylene Oxide.
  • Bibliography and Suggested Additional Reading.
  • References.
  • Appendix A Acronym Glossary.
  • Appendix B Symmetry and Group Theory.
  • B.1 Symmetry Elements.
  • B.2 Molecular Point Groups and Irreducible Representations.
  • B.3 Assigning Electronic State Symmetries.
  • B.4 Symmetry in the Evaluation of Integrals and Partition Functions.
  • Appendix C Spin Algebra.
  • C.1 Spin Operators.
  • C.2 Pure- and Mixed-spin Wave Functions.
  • C.3 UHF Wave Functions.
  • C.4 Spin Projection/Annihilation.
  • Reference.
  • Appendix D Orbital Localization.
  • D.1 Orbitals as Empirical Constructs.
  • D.2 Natural Bond Orbital Analysis.
  • References.

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “دانلود کتاب ضروریات شیمی محاسباتی: نظریه ها و مدل ها تالیف Cramer ویرایش 2”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا