The Chemical Bond Chemical Bonding Across the Periodic Table
- فرمت فایل: PDF با کیفیت بالا و رنگی
- حجم فایل فشرده: 9.14 مگابایت
- ویرایش: 1
- نویسنده: Gernot Frenking , Sason Shaik
- تعداد صفحات کتاب: 568 صفحه
- تعداد فصل ها: 18 فصل
99,000 تومان
The Chemical Bond Chemical Bonding Across the Periodic Table
دانلود کتاب پیوند شیمیایی Chemical Bonding Across the Periodic Table
کتاب پیوند شیمیایی و بررسی انواع پیوند شیمیایی در جدول تناوبی The Chemical Bond Chemical Bonding Across the Periodic Table تالیف Gernot Frenking , Sason Shaik از بهترین کتاب های مرجع و تخصصی شیمی فیزیک که به بررسی تشکیل انواع پیوند ها در گروه های و عناصر جدول تناوبی پرداخته است و انواع پیوند ها و کمپلکس های ایجاد شده را از دیدگاه شیمی فیزیکی مورد بررسی قرار داده است.
مشخصات کتاب
فهرست و عناوین فصل های کتاب پیوند شیمیایی
1 Chemical Bonding of Main-Group Elements 1
Martin Kaupp
1.1 Introduction and Definitions 1
1.2 The Lack of Radial Nodes of the 2p Shell Accounts for Most of the Peculiarities of the Chemistry of the 2p-Elements 2
1.2.1 High Electronegativity and Small Size of the 2p-Elements 4
1.2.1.1 Hybridization Defects 4
1.2.2 The Inert-Pair Effect and its Dependence on Partial Charge of the Central Atom 7
1.2.3 Stereo-Chemically Active versus Inactive Lone Pairs 10
1.2.4 TheMultiple-Bond Paradigm and the Question of Bond Strengths 13
1.2.5 Influence of Hybridization Defects on Magnetic-Resonance Parameters 14
1.3 The Role of the Outer d-Orbitals in Bonding 15
1.4 Secondary Periodicities: Incomplete-Screening and Relativistic Effects 17
1.5 ‘‘Honorary d-Elements’’: the Peculiarities of Structure and Bonding of the Heavy Group 2 Elements 19
1.6 Concluding Remarks 21
References 21
2 Multiple Bonding of Heavy Main-Group Atoms 25
Gernot Frenking
2.1 Introduction 25
2.2 Bonding Analysis of Diatomic Molecules E2 (E=N – Bi) 27
2.3 Comparative Bonding Analysis of N2 and P2 with N4 and P4 29
2.4 Bonding Analysis of the Tetrylynes HEEH (E=C – Pb) 32
2.5 Explaining the Different Structures of the Tetrylynes HEEH (E=C – Pb) 34
2.6 Energy Decomposition Analysis of the Tetrylynes HEEH (E=C – Pb) 41
2.7 Conclusion 46
Acknowledgment 47
References 47
3 The Role of Recoupled Pair Bonding in Hypervalent Molecules 49
David E. Woon and Thom H. Dunning Jr.
3.1 Introduction 49
3.2 Multireference Wavefunction Treatment of Bonding 50
3.3 Low-Lying States of SF and OF 53
3.4 Low-Lying States of SF2 and OF2 (and Beyond) 58
3.4.1 SF2(X1A1) 58
3.4.2 SF2(a3B1) 59
3.4.3 SF2(b3A2) 61
3.4.4 OF2(X1A1) 62
3.4.5 Triplet states of OF2 62
3.4.6 SF3 and SF4 63
3.4.7 SF5 and SF6 64
3.5 Comparison to Other Models 64
3.5.1 Rundle–Pimentel 3c-4e Model 64
3.5.2 Diabatic States Model 66
3.5.3 Democracy Principle 67
3.6 Concluding Remarks 67
References 68
4 Donor–Acceptor Complexes of Main-Group Elements 71
Gernot Frenking and Ralf Tonner
4.1 Introduction 71
4.2 Single-Center Complexes EL2 73
4.2.1 Carbones CL2 73
4.2.2 Isoelectronic Group 15 and Group 13 Homologues (N+)L2 and (BH)L2 82
4.2.3 Donor–Acceptor Bonding in Heavier Tetrylenes ER2 and Tetrylones EL2 (E=Si – Pb) 88
4.3 Two-Center Complexes E2L2 94
4.3.1 Two-Center Group 14 Complexes Si2L2 –Pb2L2 (L=NHC) 95
4.3.2 Two-Center Group 13 and Group 15 Complexes B2L2 and N2L2 101
4.4 Summary and Conclusion 110
References 110
5 Electron-Counting Rules in Cluster Bonding – Polyhedral Boranes, Elemental Boron, and Boron-Rich Solids 113
Chakkingal P. Priyakumari and Eluvathingal D. Jemmis
5.1 Introduction 113
5.2 Wade’s Rule 114
5.3 Localized Bonding Schemes for Bonding in Polyhedral Boranes 119
5.4 4n + 2 Interstitial Electron Rule and Ring-Cap Orbital Overlap Compatibility 122
5.5 Capping Principle 125
5.6 Electronic Requirement of Condensed Polyhedral Boranes – mno Rule 126
5.7 Factors Affecting the Stability of Condensed Polyhedral Clusters 134
5.7.1 Exo-polyhedral Interactions 134
5.7.2 Orbital Compatibility 135
5.8 Hypoelectronic Metallaboranes 136
5.9 Electronic Structure of Elemental Boron and Boron-Rich Metal Borides – Application of Electron-Counting Rules 139
5.9.1 α-Rhombohedral Boron 139
5.9.2 β-Rhombohedral Boron 140
5.9.3 Alkali Metal-Indium Clusters 142
5.9.4 Electronic Structure of Mg∼5B44 143
5.10 Conclusion 144
References 145
6 Bound Triplet Pairs in the Highest Spin States of Monovalent Metal Clusters 149
David Danovich and Sason Shaik
6.1 Introduction 149
6.2 Can Triplet Pairs Be Bonded? 150
6.2.1 A Prototypical Bound Triplet Pair in 3Li2 150
6.2.2 The NPFM Bonded Series of n+1Lin (n = 2−10) 152
6.3 Origins of NPFM Bonding in n+1Lin Clusters 152
6.3.1 Orbital Cartoons for the NPFM Bonding of the 3Σ+u State of Li2 154
6.4 Generalization of NPFM Bonding in n+1Lin Clusters 156
6.4.1 VB Mixing Diagram Representation of the Bonding in 3Li2 156
6.4.2 VB Modeling of n+1Lin Patterns 158
6.5 NPFM Bonding in Coinage Metal Clusters 161
6.5.1 Structures and Bonding of Coinage Metal NPFM Clusters 161
6.6 Valence Bond Modeling of the Bonding in NPFM Clusters of the Coinage Metals 163
6.7 NPFM Bonding: Resonating Bound Triplet Pairs 167
6.8 Concluding Remarks: Bound Triplet Pairs 168
Appendix 170
6.A Methods and Some Details of Calculations 170
6.B Symmetry Assignment of the VB Wave Function 170
6.C The VB Configuration Count and the Expressions for De for NPFM Clusters 171
References 172
7 Chemical Bonding in Transition Metal Compounds 175
Gernot Frenking
7.1 Introduction 175
7.2 Valence Orbitals and Hybridization in Electron-Sharing Bonds of Transition Metals 177
7.3 Carbonyl Complexes TM(CO) q 6 (TMq =Hf2−, Ta−, W, Re+, Os2+, Ir3+) 181
7.4 Phosphane Complexes (CO)5TM-PR3 and N-Heterocyclic Carbene Complexes (CO)5TM-NHC (TM=Cr, Mo, W) 187
7.5 Ethylene and Acetylene Complexes (CO)5TM-C2Hn and Cl4TM-C2Hn (TM=Cr, Mo, W) 190
7.6 Group-13 Diyl Complexes (CO)4Fe-ER (E=B – Tl; R=Ph, Cp) 195
7.7 Ferrocene Fe(η5-Cp)2 and Bis(benzene)chromium Cr(η6-Bz)2 199
7.8 Cluster, Complex, or Electron-Sharing Compound? Chemical Bonding in Mo(EH)12 and Pd(EH)8 (E=Zn, Cd, Hg) 203
7.9 Metal–Metal Multiple Bonding 211
7.10 Summary 214
Acknowledgment 214
References 214
8 Chemical Bonding in Open-Shell Transition-Metal Complexes 219
Katharina Boguslawski and Markus Reiher
8.1 Introduction 219
8.2 Theoretical Foundations 220
8.2.1 Definition of Open-Shell Electronic Structures 221
8.2.2 The Configuration Interaction Ansatz 222
8.2.2.1 The Truncation Procedure 222
8.2.2.2 Density Matrices 222
8.2.3 Ab Initio Single-Reference Approaches 223
8.2.4 Ab Initio Multireference Approaches 224
8.2.5 Density Functional Theory for Open-Shell Molecules 229
8.3 Qualitative Interpretation 230
8.3.1 Local Spin 230
8.3.2 Broken Spin Symmetry 233
8.3.3 Analysis of Bond Orders 235
8.3.4 Atoms in Molecules 237
8.3.5 Entanglement Measures for Single- and Multireference Correlation Effects 239
8.4 Spin Density Distributions—A Case Study 243
8.4.1 A One-Determinant Picture 243
8.4.2 A Multiconfigurational Study 245
8.5 Summary 246
Acknowledgments 247
References 247
9 Modeling Metal–Metal Multiple Bonds with Multireference Quantum Chemical Methods 253
Laura Gagliardi
9.1 Introduction 253
9.2 Multireference Methods and Effective Bond Orders 253
9.3 The Multiple Bond in Re2Cl 2−8 254
9.4 Homonuclear Diatomic Molecules: Cr2, Mo2, andW2 255
9.5 Cr2, Mo2, andW2 Containing Complexes 259
9.6 Fe2 Complexes 264
9.7 Concluding Remarks 265
Acknowledgment 266
References 266
10 The Quantum Chemistry of Transition Metal Surface Bonding and Reactivity 269
Rutger A. van Santen and Ivo A. W. Filot
10.1 Introduction 269
10.2 The Elementary Quantum-Chemical Model of the Surface Chemical Bond 272
10.3 Quantum Chemistry of the Surface Chemical Bond 276
10.3.1 Adatom Adsorption Energy Dependence on Coordinative Unsaturation of Surface Atoms 276
10.3.2 Adatom Adsorption Energy as a Function of Metal Position in the Periodic System 284
10.3.3 Molecular Adsorption; Adsorption of CO 286
10.3.4 Surface Group Orbitals 296
10.3.5 Adsorbate Coordination in Relation to Adsorbate Valence 301
10.4 Metal Particle Composition and Size Dependence 303
10.4.1 Alloying: Coordinative Unsaturation versus Increased Overlap Energies 303
10.4.2 Particle Size Dependence 305
10.5 Lateral Interactions; Reconstruction 310
10.6 Adsorbate Bond Activation and Formation 317
10.6.1 The Reactivity of Different Metal Surfaces 317
10.6.2 The Quantum-Chemical View of Bond Activation 321
10.6.2.1 Activation of the Molecular π Bond (Particle Shape Dependence) 321
10.6.2.2 The Uniqueness of the (100) Surface 323
10.6.2.3 Activation of the Molecular σ Bond; CH4 and NH3 325
10.7 Transition State Analysis: A Summary 328
References 333
11 Chemical Bonding of Lanthanides and Actinides 337
Nikolas Kaltsoyannis and Andrew Kerridge
11.1 Introduction 337
11.2 Technical Issues 338
11.3 The Energy Decomposition Approach to the Bonding in f Block Compounds 338
11.3.1 A Comparison of U–N and U–O Bonding in Uranyl(VI) Complexes 339
11.3.2 Toward a 32-Electron Rule 340
11.4 f Block Applications of the Electron Localization Function 341
11.5 Does Covalency Increase or Decrease across the Actinide Series? 342
11.6 Multi-configurational Descriptions of Bonding in f Element Complexes 347
11.6.1 U2: A Quintuply Bonded Actinide Dimer 347
11.6.2 Bonding in the Actinyls 349
11.6.3 Oxidation State Ambiguity in the f Block Metallocenes 350
11.7 Concluding Remarks 353
References 354
12 Direct Estimate of Conjugation, Hyperconjugation, and Aromaticity with the Energy Decomposition Analysis Method 357
Israel Fern´andez
12.1 Introduction 357
12.2 The EDA Method 359
12.3 Conjugation 361
12.3.1 Conjugation in 1,3-Butadienes, 1,3-Butadiyne, Polyenes, and Enones 361
12.3.2 Correlation with Experimental Data 363
12.4 Hyperconjugation 370
12.4.1 Hyperconjugation in Ethane and Ethane-Like Compounds 370
12.4.2 Group 14 β-Effect 371
12.5 Aromaticity 372
12.5.1 Aromaticity in Neutral Exocyclic Substituted Cyclopropenes (HC)2C=X 374
12.5.2 Aromaticity in Group 14 Homologs of the Cyclopropenylium Cation 375
12.5.3 Aromaticity in Metallabenzenes 376
12.6 Concluding Remarks 378
References 379
13 Magnetic Properties of Aromatic Compounds and Aromatic Transition States 383
Rainer Herges
13.1 Introduction 383
13.2 A Short Historical Review of Aromaticity 384
13.3 Magnetic Properties of Molecules 386
13.3.1 Exaltation and Anisotropy of Magnetic Susceptibility 387
13.3.2 Chemical Shifts in NMR 391
13.3.3 Quantum Theoretical Treatment 392
13.4 Examples 397
13.4.1 Benzene and Borazine 397
13.4.2 Pyridine, Phosphabenzene, and Silabenzene 398
13.4.3 Fullerenes 400
13.4.4 H¨uckel and M¨obius Structures 401
13.4.5 Homoaromatic Molecules 403
13.4.6 Organometallic Compounds 404
13.4.7 Aromatic Transition States 406
13.4.8 Coarctate Transition States 411
13.5 Concluding Remarks 415
References 415
14 Chemical Bonding in Inorganic Aromatic Compounds 421
Ivan A. Popov and Alexander I. Boldyrev
14.1 Introduction 421
14.2 How to Recognize Aromaticity and Antiaromaticity? 422
14.3 ‘‘Conventional’’ Aromatic/Antiaromatic Inorganic Molecules 426
14.3.1 Inorganic B3N3H6 Borazine and 1,3,2,4-Diazadiboretiidine B2N2H4 427
14.3.2 Aromatic P 2−4 , P − 5 , P6 and Their Analogs 428
14.4 ‘‘Unconventional’’ Aromatic/Antiaromatic Inorganic Molecules 430
14.4.1 σ-Aromatic and σ-Antiaromatic Species 431
14.4.2 σ-/π-Aromatic, σ-/π-Antiaromatic, and Species with σ-/π-Conflicting Aromaticity 432
14.4.3 σ-/π-/δ-Aromatic, σ-/π-/δ-Antiaromatic, and Species with σ-/π-/δ-Conflicting Aromaticity 436
14.5 Summary and Perspectives 440
Acknowledgments 441
References 441
15 Chemical Bonding in Solids 445
Pere Alemany and Enric Canadell
15.1 Introduction 445
15.2 Electronic Structure of Solids: Basic Notions 447
15.2.1 Bloch Orbitals, Crystal Orbitals, and Band Structure 447
15.2.2 Fermi Level and Electron Counting 449
15.2.3 Peierls Distortions 451
15.2.4 Density of States and its Analysis 453
15.2.5 Electronic Localization 456
15.3 Bonding in Solids: Some Illustrative Cases 458
15.3.1 Covalent Bonds in Polar Metallic Solids: A3Bi2 and A4Bi5 (A=K, Rb, Cs) 459
15.3.2 Electronic Localization: Magnetic versus Metallic Behavior in K4P3 462
15.3.3 Crystal versus Electronic Structure: Are There Really Polyacetylene-Like Gallium Chains in Li2Ga? 466
15.3.4 Ba7Ga4Sb9: Do the Different Cations in Metallic Zintl Phases Play the Same Role? 470
15.4 Concluding Remarks 473
Acknowledgments 474
References 474
16 Dispersion Interaction and Chemical Bonding 477
Stefan Grimme
16.1 Introduction 477
16.2 A Short Survey of the Theory of the London Dispersion Energy 480
16.3 Theoretical Methods to Compute the Dispersion Energy 485
16.3.1 General 486
16.3.2 Supermolecular Wave Function Theory (WFT) 486
16.3.3 Supermolecular Density Functional Theory (DFT) 488
16.3.4 Symmetry-Adapted Perturbation Theory (SAPT) 490
16.4 Selected Examples 492
16.4.1 Substituted Ethenes 492
16.4.2 Steric Crowding Can Stabilize a Labile Molecule: Hexamethylethane Derivatives 493
16.4.3 Overcoming Coulomb Repulsion in a Transition Metal Complex 494
16.5 Conclusion 495
16.6 Computational Details 496
References 496
17 Hydrogen Bonding 501
Hajime Hirao and Xiaoqing Wang
17.1 Introduction 501
17.2 Fundamental Properties of Hydrogen Bonds 502
17.3 Hydrogen Bonds with Varying Strengths 504
17.4 Hydrogen Bonds in Biological Molecules 506
17.5 Theoretical Description of Hydrogen Bonding 508
17.5.1 Valence Bond Description of the Hydrogen Bond 508
17.5.2 Electrostatic and Orbital Interactions in H Bonds 509
17.5.3 Ab Initio and Density Functional Theory Calculations of Water Dimer 510
17.5.4 Energy Decomposition Analysis 511
17.5.5 Electron Density Distribution Analysis 513
17.5.6 Topological Analysis of the Electron Density and the Electron Localization Function 514
17.5.7 Resonance-Assisted Hydrogen Bonding 515
17.5.8 Improper, Blueshifting Hydrogen Bonds 516
17.6 Summary 517
Acknowledgment 517
References 517
18 Directional Electrostatic Bonding 523
Timothy Clark
18.1 Introduction 523
18.2 Anisotropic Molecular Electrostatic Potential Distribution Around Atoms 524
18.3 Electrostatic Anisotropy, Donor–Acceptor Interactions and Polarization 528
18.4 Purely Electrostatic Models 530
18.5 Difference-Density Techniques 531
18.6 Directional Noncovalent Interactions 533
18.7 Conclusions 534
Acknowledgments 534
References 534
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.