دانلود کتاب پیوند شیمیایی Chemical Bonding Across the Periodic Table

99,000 تومان

 The Chemical Bond Chemical Bonding Across the Periodic Table

  • فرمت فایل: PDF با کیفیت بالا و رنگی
  • حجم فایل فشرده: 9.14 مگابایت
  • ویرایش:  1
  • نویسنده: Gernot Frenking , Sason Shaik
  • تعداد صفحات کتاب: 568 صفحه
  • تعداد فصل ها: 18 فصل

 دانلود کتاب پیوند شیمیایی Chemical Bonding Across the Periodic Table

کتاب پیوند شیمیایی و بررسی انواع پیوند شیمیایی در جدول تناوبی The Chemical Bond Chemical Bonding Across the Periodic Table تالیف Gernot Frenking , Sason Shaik از بهترین کتاب های مرجع و تخصصی شیمی فیزیک که به بررسی تشکیل انواع پیوند ها در گروه های و عناصر جدول تناوبی پرداخته است و انواع پیوند ها و کمپلکس های ایجاد شده را از دیدگاه شیمی فیزیکی مورد بررسی قرار داده است.

مشخصات کتاب

  • عنوان کتاب:  The Chemical Bond Chemical Bonding Across the Periodic Table
  • فرمت فایل: PDF با کیفیت بالا و رنگی
  • حجم فایل فشرده: 9.14 مگابایت
  • ویرایش:  1
  • زبان نوشتاری: انگلیسی
  • نویسنده: Gernot Frenking , Sason Shaik
  • تعداد صفحات کتاب: 568 صفحه
  • تعداد فصل ها: 18 فصل
  • نحوه دریافت : دانلود فوری و آنی لینک دانلود فایل بعد از پرداخت

 

فهرست و عناوین فصل های کتاب پیوند شیمیایی

1 Chemical Bonding of Main-Group Elements 1

Martin Kaupp

1.1 Introduction and Definitions 1

1.2 The Lack of Radial Nodes of the 2p Shell Accounts for Most of the Peculiarities of the Chemistry of the 2p-Elements 2

1.2.1 High Electronegativity and Small Size of the 2p-Elements 4

1.2.1.1 Hybridization Defects 4

1.2.2 The Inert-Pair Effect and its Dependence on Partial Charge of the Central Atom 7

1.2.3 Stereo-Chemically Active versus Inactive Lone Pairs 10

1.2.4 TheMultiple-Bond Paradigm and the Question of Bond Strengths 13

1.2.5 Influence of Hybridization Defects on Magnetic-Resonance Parameters 14

1.3 The Role of the Outer d-Orbitals in Bonding 15

1.4 Secondary Periodicities: Incomplete-Screening and Relativistic Effects 17

1.5 ‘‘Honorary d-Elements’’: the Peculiarities of Structure and Bonding of the Heavy Group 2 Elements 19

1.6 Concluding Remarks 21

References 21

2 Multiple Bonding of Heavy Main-Group Atoms 25

Gernot Frenking

2.1 Introduction 25

2.2 Bonding Analysis of Diatomic Molecules E2 (E=N – Bi) 27

2.3 Comparative Bonding Analysis of N2 and P2 with N4 and P4 29

2.4 Bonding Analysis of the Tetrylynes HEEH (E=C – Pb) 32

2.5 Explaining the Different Structures of the Tetrylynes HEEH (E=C – Pb) 34

2.6 Energy Decomposition Analysis of the Tetrylynes HEEH (E=C – Pb) 41

2.7 Conclusion 46

Acknowledgment 47

References 47

3 The Role of Recoupled Pair Bonding in Hypervalent Molecules 49

David E. Woon and Thom H. Dunning Jr.

3.1 Introduction 49

3.2 Multireference Wavefunction Treatment of Bonding 50

3.3 Low-Lying States of SF and OF 53

3.4 Low-Lying States of SF2 and OF2 (and Beyond) 58

3.4.1 SF2(X1A1) 58

3.4.2 SF2(a3B1) 59

3.4.3 SF2(b3A2) 61

3.4.4 OF2(X1A1) 62

3.4.5 Triplet states of OF2 62

3.4.6 SF3 and SF4 63

3.4.7 SF5 and SF6 64

3.5 Comparison to Other Models 64

3.5.1 Rundle–Pimentel 3c-4e Model 64

3.5.2 Diabatic States Model 66

3.5.3 Democracy Principle 67

3.6 Concluding Remarks 67

References 68

4 Donor–Acceptor Complexes of Main-Group Elements 71

Gernot Frenking and Ralf Tonner

4.1 Introduction 71

4.2 Single-Center Complexes EL2 73

4.2.1 Carbones CL2 73

4.2.2 Isoelectronic Group 15 and Group 13 Homologues (N+)L2 and (BH)L2 82

4.2.3 Donor–Acceptor Bonding in Heavier Tetrylenes ER2 and Tetrylones EL2 (E=Si – Pb) 88

4.3 Two-Center Complexes E2L2 94

4.3.1 Two-Center Group 14 Complexes Si2L2 –Pb2L2 (L=NHC) 95

4.3.2 Two-Center Group 13 and Group 15 Complexes B2L2 and N2L2 101

4.4 Summary and Conclusion 110

References 110

5 Electron-Counting Rules in Cluster Bonding – Polyhedral Boranes, Elemental Boron, and Boron-Rich Solids 113

Chakkingal P. Priyakumari and Eluvathingal D. Jemmis

5.1 Introduction 113

5.2 Wade’s Rule 114

5.3 Localized Bonding Schemes for Bonding in Polyhedral Boranes 119

5.4 4n + 2 Interstitial Electron Rule and Ring-Cap Orbital Overlap Compatibility 122

5.5 Capping Principle 125

5.6 Electronic Requirement of Condensed Polyhedral Boranes – mno Rule 126

5.7 Factors Affecting the Stability of Condensed Polyhedral Clusters 134

5.7.1 Exo-polyhedral Interactions 134

5.7.2 Orbital Compatibility 135

5.8 Hypoelectronic Metallaboranes 136

5.9 Electronic Structure of Elemental Boron and Boron-Rich Metal Borides – Application of Electron-Counting Rules 139

5.9.1 α-Rhombohedral Boron 139

5.9.2 β-Rhombohedral Boron 140

5.9.3 Alkali Metal-Indium Clusters 142

5.9.4 Electronic Structure of Mg∼5B44 143

5.10 Conclusion 144

References 145

6 Bound Triplet Pairs in the Highest Spin States of Monovalent Metal Clusters 149

David Danovich and Sason Shaik

6.1 Introduction 149

6.2 Can Triplet Pairs Be Bonded? 150

6.2.1 A Prototypical Bound Triplet Pair in 3Li2 150

6.2.2 The NPFM Bonded Series of n+1Lin (n = 2−10) 152

6.3 Origins of NPFM Bonding in n+1Lin Clusters 152

6.3.1 Orbital Cartoons for the NPFM Bonding of the 3Σ+u State of Li2 154

6.4 Generalization of NPFM Bonding in n+1Lin Clusters 156

6.4.1 VB Mixing Diagram Representation of the Bonding in 3Li2 156

6.4.2 VB Modeling of n+1Lin Patterns 158

6.5 NPFM Bonding in Coinage Metal Clusters 161

6.5.1 Structures and Bonding of Coinage Metal NPFM Clusters 161

6.6 Valence Bond Modeling of the Bonding in NPFM Clusters of the Coinage Metals 163

6.7 NPFM Bonding: Resonating Bound Triplet Pairs 167

6.8 Concluding Remarks: Bound Triplet Pairs 168

Appendix 170

6.A Methods and Some Details of Calculations 170

6.B Symmetry Assignment of the VB Wave Function 170

6.C The VB Configuration Count and the Expressions for De for NPFM Clusters 171

References 172

7 Chemical Bonding in Transition Metal Compounds 175

Gernot Frenking

7.1 Introduction 175

7.2 Valence Orbitals and Hybridization in Electron-Sharing Bonds of Transition Metals 177

7.3 Carbonyl Complexes TM(CO) q 6 (TMq =Hf2−, Ta−, W, Re+, Os2+, Ir3+) 181

7.4 Phosphane Complexes (CO)5TM-PR3 and N-Heterocyclic Carbene Complexes (CO)5TM-NHC (TM=Cr, Mo, W) 187

7.5 Ethylene and Acetylene Complexes (CO)5TM-C2Hn and Cl4TM-C2Hn (TM=Cr, Mo, W) 190

7.6 Group-13 Diyl Complexes (CO)4Fe-ER (E=B – Tl; R=Ph, Cp) 195

7.7 Ferrocene Fe(η5-Cp)2 and Bis(benzene)chromium Cr(η6-Bz)2 199

7.8 Cluster, Complex, or Electron-Sharing Compound? Chemical Bonding in Mo(EH)12 and Pd(EH)8 (E=Zn, Cd, Hg) 203

7.9 Metal–Metal Multiple Bonding 211

7.10 Summary 214

Acknowledgment 214

References 214

8 Chemical Bonding in Open-Shell Transition-Metal Complexes 219

Katharina Boguslawski and Markus Reiher

8.1 Introduction 219

8.2 Theoretical Foundations 220

8.2.1 Definition of Open-Shell Electronic Structures 221

8.2.2 The Configuration Interaction Ansatz 222

8.2.2.1 The Truncation Procedure 222

8.2.2.2 Density Matrices 222

8.2.3 Ab Initio Single-Reference Approaches 223

8.2.4 Ab Initio Multireference Approaches 224

8.2.5 Density Functional Theory for Open-Shell Molecules 229

8.3 Qualitative Interpretation 230

8.3.1 Local Spin 230

8.3.2 Broken Spin Symmetry 233

8.3.3 Analysis of Bond Orders 235

8.3.4 Atoms in Molecules 237

8.3.5 Entanglement Measures for Single- and Multireference Correlation Effects 239

8.4 Spin Density Distributions—A Case Study 243

8.4.1 A One-Determinant Picture 243

8.4.2 A Multiconfigurational Study 245

8.5 Summary 246

Acknowledgments 247

References 247

9 Modeling Metal–Metal Multiple Bonds with Multireference Quantum Chemical Methods 253

Laura Gagliardi

9.1 Introduction 253

9.2 Multireference Methods and Effective Bond Orders 253

9.3 The Multiple Bond in Re2Cl 2−8 254

9.4 Homonuclear Diatomic Molecules: Cr2, Mo2, andW2 255

9.5 Cr2, Mo2, andW2 Containing Complexes 259

9.6 Fe2 Complexes 264

9.7 Concluding Remarks 265

Acknowledgment 266

References 266

10 The Quantum Chemistry of Transition Metal Surface Bonding and Reactivity 269

Rutger A. van Santen and Ivo A. W. Filot

10.1 Introduction 269

10.2 The Elementary Quantum-Chemical Model of the Surface Chemical Bond 272

10.3 Quantum Chemistry of the Surface Chemical Bond 276

10.3.1 Adatom Adsorption Energy Dependence on Coordinative Unsaturation of Surface Atoms 276

10.3.2 Adatom Adsorption Energy as a Function of Metal Position in the Periodic System 284

10.3.3 Molecular Adsorption; Adsorption of CO 286

10.3.4 Surface Group Orbitals 296

10.3.5 Adsorbate Coordination in Relation to Adsorbate Valence 301

10.4 Metal Particle Composition and Size Dependence 303

10.4.1 Alloying: Coordinative Unsaturation versus Increased Overlap Energies 303

10.4.2 Particle Size Dependence 305

10.5 Lateral Interactions; Reconstruction 310

10.6 Adsorbate Bond Activation and Formation 317

10.6.1 The Reactivity of Different Metal Surfaces 317

10.6.2 The Quantum-Chemical View of Bond Activation 321

10.6.2.1 Activation of the Molecular π Bond (Particle Shape Dependence) 321

10.6.2.2 The Uniqueness of the (100) Surface 323

10.6.2.3 Activation of the Molecular σ Bond; CH4 and NH3 325

10.7 Transition State Analysis: A Summary 328

References 333

11 Chemical Bonding of Lanthanides and Actinides 337

Nikolas Kaltsoyannis and Andrew Kerridge

11.1 Introduction 337

11.2 Technical Issues 338

11.3 The Energy Decomposition Approach to the Bonding in f Block Compounds 338

11.3.1 A Comparison of U–N and U–O Bonding in Uranyl(VI) Complexes 339

11.3.2 Toward a 32-Electron Rule 340

11.4 f Block Applications of the Electron Localization Function 341

11.5 Does Covalency Increase or Decrease across the Actinide Series? 342

11.6 Multi-configurational Descriptions of Bonding in f Element Complexes 347

11.6.1 U2: A Quintuply Bonded Actinide Dimer 347

11.6.2 Bonding in the Actinyls 349

11.6.3 Oxidation State Ambiguity in the f Block Metallocenes 350

11.7 Concluding Remarks 353

References 354

12 Direct Estimate of Conjugation, Hyperconjugation, and Aromaticity with the Energy Decomposition Analysis Method 357

Israel Fern´andez

12.1 Introduction 357

12.2 The EDA Method 359

12.3 Conjugation 361

12.3.1 Conjugation in 1,3-Butadienes, 1,3-Butadiyne, Polyenes, and Enones 361

12.3.2 Correlation with Experimental Data 363

12.4 Hyperconjugation 370

12.4.1 Hyperconjugation in Ethane and Ethane-Like Compounds 370

12.4.2 Group 14 β-Effect 371

12.5 Aromaticity 372

12.5.1 Aromaticity in Neutral Exocyclic Substituted Cyclopropenes (HC)2C=X 374

12.5.2 Aromaticity in Group 14 Homologs of the Cyclopropenylium Cation 375

12.5.3 Aromaticity in Metallabenzenes 376

12.6 Concluding Remarks 378

References 379

13 Magnetic Properties of Aromatic Compounds and Aromatic Transition States 383

Rainer Herges

13.1 Introduction 383

13.2 A Short Historical Review of Aromaticity 384

13.3 Magnetic Properties of Molecules 386

13.3.1 Exaltation and Anisotropy of Magnetic Susceptibility 387

13.3.2 Chemical Shifts in NMR 391

13.3.3 Quantum Theoretical Treatment 392

13.4 Examples 397

13.4.1 Benzene and Borazine 397

13.4.2 Pyridine, Phosphabenzene, and Silabenzene 398

13.4.3 Fullerenes 400

13.4.4 H¨uckel and M¨obius Structures 401

13.4.5 Homoaromatic Molecules 403

13.4.6 Organometallic Compounds 404

13.4.7 Aromatic Transition States 406

13.4.8 Coarctate Transition States 411

13.5 Concluding Remarks 415

References 415

14 Chemical Bonding in Inorganic Aromatic Compounds 421

Ivan A. Popov and Alexander I. Boldyrev

14.1 Introduction 421

14.2 How to Recognize Aromaticity and Antiaromaticity? 422

14.3 ‘‘Conventional’’ Aromatic/Antiaromatic Inorganic Molecules 426

14.3.1 Inorganic B3N3H6 Borazine and 1,3,2,4-Diazadiboretiidine B2N2H4 427

14.3.2 Aromatic P 2−4 , P − 5 , P6 and Their Analogs 428

14.4 ‘‘Unconventional’’ Aromatic/Antiaromatic Inorganic Molecules 430

14.4.1 σ-Aromatic and σ-Antiaromatic Species 431

14.4.2 σ-/π-Aromatic, σ-/π-Antiaromatic, and Species with σ-/π-Conflicting Aromaticity 432

14.4.3 σ-/π-/δ-Aromatic, σ-/π-/δ-Antiaromatic, and Species with σ-/π-/δ-Conflicting Aromaticity 436

14.5 Summary and Perspectives 440

Acknowledgments 441

References 441

15 Chemical Bonding in Solids 445

Pere Alemany and Enric Canadell

15.1 Introduction 445

15.2 Electronic Structure of Solids: Basic Notions 447

15.2.1 Bloch Orbitals, Crystal Orbitals, and Band Structure 447

15.2.2 Fermi Level and Electron Counting 449

15.2.3 Peierls Distortions 451

15.2.4 Density of States and its Analysis 453

15.2.5 Electronic Localization 456

15.3 Bonding in Solids: Some Illustrative Cases 458

15.3.1 Covalent Bonds in Polar Metallic Solids: A3Bi2 and A4Bi5 (A=K, Rb, Cs) 459

15.3.2 Electronic Localization: Magnetic versus Metallic Behavior in K4P3 462

15.3.3 Crystal versus Electronic Structure: Are There Really Polyacetylene-Like Gallium Chains in Li2Ga? 466

15.3.4 Ba7Ga4Sb9: Do the Different Cations in Metallic Zintl Phases Play the Same Role? 470

15.4 Concluding Remarks 473

Acknowledgments 474

References 474

16 Dispersion Interaction and Chemical Bonding 477

Stefan Grimme

16.1 Introduction 477

16.2 A Short Survey of the Theory of the London Dispersion Energy 480

16.3 Theoretical Methods to Compute the Dispersion Energy 485

16.3.1 General 486

16.3.2 Supermolecular Wave Function Theory (WFT) 486

16.3.3 Supermolecular Density Functional Theory (DFT) 488

16.3.4 Symmetry-Adapted Perturbation Theory (SAPT) 490

16.4 Selected Examples 492

16.4.1 Substituted Ethenes 492

16.4.2 Steric Crowding Can Stabilize a Labile Molecule: Hexamethylethane Derivatives 493

16.4.3 Overcoming Coulomb Repulsion in a Transition Metal Complex 494

16.5 Conclusion 495

16.6 Computational Details 496

References 496

17 Hydrogen Bonding 501

Hajime Hirao and Xiaoqing Wang

17.1 Introduction 501

17.2 Fundamental Properties of Hydrogen Bonds 502

17.3 Hydrogen Bonds with Varying Strengths 504

17.4 Hydrogen Bonds in Biological Molecules 506

17.5 Theoretical Description of Hydrogen Bonding 508

17.5.1 Valence Bond Description of the Hydrogen Bond 508

17.5.2 Electrostatic and Orbital Interactions in H Bonds 509

17.5.3 Ab Initio and Density Functional Theory Calculations of Water Dimer 510

17.5.4 Energy Decomposition Analysis 511

17.5.5 Electron Density Distribution Analysis 513

17.5.6 Topological Analysis of the Electron Density and the Electron Localization Function 514

17.5.7 Resonance-Assisted Hydrogen Bonding 515

17.5.8 Improper, Blueshifting Hydrogen Bonds 516

17.6 Summary 517

Acknowledgment 517

References 517

18 Directional Electrostatic Bonding 523

Timothy Clark

18.1 Introduction 523

18.2 Anisotropic Molecular Electrostatic Potential Distribution Around Atoms 524

18.3 Electrostatic Anisotropy, Donor–Acceptor Interactions and Polarization 528

18.4 Purely Electrostatic Models 530

18.5 Difference-Density Techniques 531

18.6 Directional Noncovalent Interactions 533

18.7 Conclusions 534

Acknowledgments 534

References 534

 

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “دانلود کتاب پیوند شیمیایی Chemical Bonding Across the Periodic Table”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا