دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists

5,900 تومان

  • ویرایش: 2
  • نویسنده: راسل دراگو
  • تعداد صفحات: 776 صفحه
  • حجم فایل: 25.3 مگابایت
  • فرمت: PDF

توضیحات

دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists

کتاب طیف سنجی در شیمی معدنی راسل دراگو ویرایش 2 دوم با عنوان Physical Methods for Chemists 2nd Edition by Russell S. Drago از بهترین کتاب های مرجع و تخصصی در زمینه طیف سنجی شیمی معدنی می باشد.

درس طیف سنجی ترکیبات معدنی جز مهم ترین  دروس مقطع کارشناسی ارشد شیمی معدنی می باشد . یک دانشجوی شیمی باید قادر باشد طیف های انواع اسپکتروسکوپی را تحلیل و تفسیر کند که در این میان کتاب طیف سنجی دراگو منبعی بسیار ارزشمند و مفید می باشد.

 

مشخصات کتاب 

  • عنوان کتاب: Physical Methods for Chemists
  • فرمت فایل: PDF 
  • حجم فایل فشرده: 25.3 مگابایت
  • زبان نوشتاری: انگلیسی
  • ویرایش: 2 
  • نویسنده:  Russell S. Drago
  • تعداد صفحات: 776 صفحه 
  • تعداد فصل ها: 17 فصل
  • نحوه دریافت : دانلود فوری و آنی فایل بعد از پرداخت

 

حل المسائل کتاب هم از اینجا دانلود کنید

 

فهرست مطالب و عناوین فصل های کتاب طیف سنجی شیمی معدنی دراگو ویرایش 2

فصل ۱: تقارن و گروه های نقطه ای

فصل ۲: نظریه گروه و جدول کاراکتر

فصل ۳: نظریه اوربیتال مولکولی

فصل ۴: مقدمه ای بر اسپکتروسکوپی

فصل ۵: اسپکتروسکوپی جذب الکترونی

فصل ۶: اسپکتروسکوپی ارتعاشی و پرخشی ( IR، Raman و Microwave)

فصل ۷: اسپکتروسکوپی رزونانس مغناطیسی هسته (NMR)

فصل ۸: دینامیک و تبدیل فوریه NMR

فصل ۹: اسپکتروسکوپی رزونانس پارامغناطیس الکترون (EPR)

فصل ۱۰: ساختار الکترونی و طیف یون های فلزات واسطه

فصل ۱۱: مغناطیس

فصل ۱۲: رزونانس مغناطیسی هسته (NMR) مواد پارامغناطیس در محلول

فصل ۱۳: طیف رزونانس پارامغناطیس الکترون کمپلکس فلزات واسطه

فصل ۱۴:اسپکتروسکوپی رزونانس چهار قطبی هسته (NQR)

فصل ۱۵: اسپکتروسکوپی موزبائر

فصل ۱۶: روش های یونیزاسیون: طیف سنجی جرمی، فوتوالکترون، سیکلوترون

فصل ۱۷: طیف سنجی پراش پرتو ایکس (XRD)

Symmetry and the Point Groups 1

Introduction 1

1-1 Definition of Symmetry 1

1-2 Symmetry Elements 2

1-3 Point Groups 8

1-4 Space Symmetry 11

1-5 Some Definitions and Applications of Symmetry

Considerations 12

References Cited 14

Additional Reading 14

Exercises 14

Group Theory and the Character Tables 18

2-1 Introduction 18

2-2 Rules for Elements that Constitute a Group 19

2-3 Group Multiplication Tables 19

2-4 Summary of the Properties of Vectors and Matrices 25

2-5 Representations; Geometric Transformations 30

2-6 Irreducible Representations 34

2-7 Character Tables 35

2-8 Non-Diagonal Representations 36

2-9 More on Character Tables 41

2-10 More on Representations 43

2-11 Simplified Procedures for Generating and Factoring Total

Representations: The Decomposition Formula 44

2-12 Direct Products 46

Additional Reading 47

Exercises 47

Molecular Orbital Theory and Its Symmetry Aspects 52

Introduction 52

3-1 Operators 52

3-2 A Matrix Formulation of Molecular Orbital Calculations 56

3-3 Perturbation Theory 57

Symmetry in Quantum Mechanics 59

3-4 Wave Functions as a Basis for Irreducible Representations 59

3-5 Projecting Molecular Orbitals 60

Molecular Orbital Calculations 68

3-6 Hiickel Procedure 68

3-7 Properties Derived from Wave Functions 72

3-8 Extended Huckel Procedure 74

3-9 SCF-INDO (Intermediate Neglect of Differential Overlap) 78

3-10 Some Predictions from M.O. Theory on Alternately Double

Bonded Hydrocarbons 83

3-11 More on Product Ground State Wave Functions 84

References Cited 85

Additional Reading 85

Compilations 86

Exercises 86

General Introduction to Spectroscopy 90

4-1 Nature of Radiation 90

4-2 Energies Corresponding to Various Kinds of Radiation 91

4-3 Atomic and Molecular Transitions 92

4-4 Selection Rules 95

4-5 Relaxation and Chemical Exchange Influences on Spectral

Line Width 95

General Applications 98

4-6 Determination of Concentration 99

4-7 Isosbestic Points 103

4-8 Job’s Method of Isomolar Solutions 106

4-9 “Fingerprinting” 106

References Cited 107

Exercises 107

5

Electronic Absorption Spectroscopy 109

Introduction 109

5-1 Vibrational and Electronic Energy Levels in a Diatomic

Molecule 109

Contents iX

5-2 Relationship of Potential Energy Curves to Electronic Spectra 111

5-3 Nomenclature 113

Assignment of Transitions 117

5-4 Spin-Orbit Coupling 117

5-5 Configuration Interaction 117

5-6 Criteria to Aid in Band Assignment 118

The Intensity of Electronic Transitions 120

5-7 Oscillator Strengths 120

5-8 Transition Moment Integral 120

5-9 Derivation of Some Selection Rules 123

5-10 Spectrum of Formaldehyde 123

5-11 Spin-Orbit and Vibronic Coupling Contributions to Intensity 124

5-12 Mixing of d and p Orbitals in Certain Symmetries 126

5-13 Magnetic Dipole and Electric Quadrupole Contributions to

Intensity 127

5-14 Charge Transfer Transitions 127

5-15 Polarized Absorption Spectra 128

Applications 130

5-16 Fingerprinting 130

5-17 Molecular Addition Compounds of Iodine 133

5-18 Effect of Solvent Polarity on Charge-Transfer Spectra 135

5-19 Structures of Excited States 137

Optical Rotary Dispersion, Circular Dichroism, and

Magnetocircular Dichroism 137

5-20 Introduction 137

5-21 Selection Rules 139

5-22 Applications 140

5-23 Magnetocircular Dichroism 141

References Cited 143

Additional References 144

Exercises 145

6

Vibration and Rotation Spectroscopy: Infrared, Raman, and Microwave 149

Introduction 149

6-1 Harmonic and Anharmonic Vibrations 149

6-2 Absorption of Radiation by Molecular Vibrations-

Selection Rules 150

6-3 Force Constant 151

Vibrations in a Polyatomic Molecule 153

6-4 The 3N – 6(5) Rule 153

6-5 Effects Giving Rise to Absorption Bands 154

X Contents

6-6 Normal Coordinate Analyses and Band Assignments 156

6-7 Group Vibrations and the Limitations of This Idea 160

Raman Spectroscopy 162

6-8 Introduction 162

6-9 Raman Selection Rules 164

6-10 Polarized and Depolarized Raman Lines 168

6-11 Resonance Raman Spectroscopy 170

Symmetry Aspects of Molecular Vibrations 172

6-12 Significance of the Nomenclature Used to Describe Various

Vibrations 172

6-13 Use of Symmetry Considerations to Determine the Number

of Active Infrared and Raman Lines 172

6-14 Symmetry Requirements for Coupling, Combination Bands,

and Fermi Resonance 176

6-15 Microwave Spectroscopy 177

6-16 Rotational Raman Spectra 179

Applications of Infrared and Raman Spectroscopy 179

6-17 Procedures 179

6-18 Fingerprinting 184

6-19 Spectra of Gases 186

6-20 Application of Raman and Infrared Selection Rules to the

Determination of Inorganic Structures 192

Bond Strength-Frequency Shift Relations 194

6-21 Changes in the Spectra of Donor Molecules upon

Coordination 196

6-22 Change in Spectra Accompanying Change in Symmetry

upon Coordination 198

References Cited 202

Additional References 205

Exercises 206

7

Nuclear Magnetic Resonance Spectroscopy-Elementary Aspects 211

Introduction 211

Classical Description of the NMR Experiment-The Bloch

Equations 212

7-1 Some Definitions 212

7-2 Behavior of a Bar Magnet in a Magnetic Field 213

7-3 Rotating Axis Systems 214

7-4 Magnetization Vectors and Relaxation 215

7-5 The NMR Transition 217

7-6 The Bloch Equations 218

7-7 The NMR Experiment 220

Contents XI

The Quantum Mechanical Description of the NMR Experiment 224

7-8 Properties of I 224

7-9 Transition Probabilities 225

Relaxation Effects and Mechanisms 227

7-10 Measuring the Chemical Shift 229

7-11 Interpretation of the Chemical Shift 232

7-12 Interatomic Ring Currents 241

7-13 Examples of Chemical Shift Interpretation 241

Spin-Spin Splitting 243

7-14 Effect of Spin-Spin Splitting on the Spectrum 243

7-15 Discovering Non-Equivalent Protons 246

7-16 Effect of the Number and Nature of the Bonds on

Spin-Spin Coupling 247

7-17 Scalar Spin-Spin Coupling Mechanisms 249

7-18 Application of Spin-Spin Coupling to Structure

Determination 252

Factors Influencing the Appearance of the NMR Spectrum 257

7-19 Effect of Fast Chemical Reactions on the Spectrum 257

7-20 Quantum Mechanical Description of Coupling 259

7-21 Effects of the Relative Magnitudes of J and A on the Spectrum

of an AB Molecule 263

7-22 More Complicated Second-Order Systems 265

7-23 Double Resonance and Spin-Tickling Experiments 267

7-24 Determining Signs of Coupling Constants 268

7-25 Effects on the Spectrum of Nuclei with Quadrupole Moments 269

References Cited 271

Compilations of Chemical Shifts 272

Exercises 273

8

Dynamic and Fourier Transform NMR 290

Introduction 290

Evaluation of Theormodynamic Data with NMR 290

NMR Kinetics 291

8-1 Rate Constants and Activation Enthalpies from NMR 291

8-2 Determination of Reaction Orders by NMR 295

8-3 Some Applications of NMR Kinetic Studies 297

8-4 Intramolecular Rearrangements Studied by NMRFluxional

Behavior 300

8-5 Spin Saturation Labeling 305

8-6 The Nuclear Overhauser Effect 306

Fourier Transform NMR 309

8-7 Principles 309

8-8 Optimizing the FTNMR Experiment 314

8-9 The Measurement of T by FTNMR 315

8-10 Use of T, for Peak Assignments 317

8-11 NMR of Quadrupolar Nuclei 319

Applications and Strategies in FTNMR 319

8-12 3C 319

8-13 Other Nuclei 323

More on Relaxation Processes 326

8-14 Spectral Density 326

Multipulse Methods 328

8-15 Introduction 328

8-16 Spin Echoes 329

8-17 Sensitivity-Enhancement Methods 331

8-18 Selective Excitation and Suppression 332

8-19 Two-Dimensional NMR 334

NMR in Solids and Liquid Crystals 340

8-20 Direct Dipolar Coupling 340

8-21 NMR Studies of Solids 341

8-22 NMR Studies in Liquid Crystal Solvents 342

8-23 High Resolution NMR of Solids 347

References Cited 348

Additional References 351

Exercises 352

9

Electron Paramagnetic Resonance Spectroscopy 360

Introduction 360

9-1 Principles 360

Nuclear Hyperfine Splitting 363

9-2 The Hydrogen Atom 363

9-3 Presentation of the Spectrum 368

9-4 Hyperfine Splittings in Isotropic Systems Involving More

Than One Nucleus 370

9-5 Contributions to the Hyperfine Coupling Constant in

Isotropic Systems 374

Anisotropic Effects 380

9-6 Anisotropy in the g Value 380

9-7 Anisotropy in the Hyperfine Coupling 383

9-8 The EPR of Triplet States 390

Contents Xii

9-9 Nuclear Quadrupole Interaction 392

9-10 Line Widths in EPR 394

9-11 The Spin Hamiltonian 396

9-12 Miscellaneous Applications 397

References Cited 400

Additional References 401

Exercises 401

10

The Electronic Structure and Spectra of Transition Metal Ions 409

Introduction 409

Free Ion Electronic States 409

10-1 Electron-Electron Interactions and Term Symbols 409

10-2 Spin-Orbit Coupling in Free Ions 413

Crystal Fields 416

10-3 Effects of Ligands on the d Orbital Energies 416

10-4 Symmetry Aspects of the d Orbital Splitting by Ligands 419

10-5 Double Groups 427

10-6 The Jahn-Teller Effect 429

10-7 Magnetic Coupling in Metal Ion Clusters 430

Applications 433

10-8 Survey of the Electronic Spectra of 0 Complexes 433

10-9 Calculation of Dq and # for 0 h Ni(II) Complexes 437

10-10 Effect of Distortions on the d Orbital Energy Levels 443

10-11 Structural Evidence from the Electronic Spectrum 447

Bonding Parameters from Spectra 450

10-12 a and 7E Bonding Parameters from the Spectra of

Tetragonal Complexes 450

10-13 The Angular Overlap Model 452

Miscellaneous Topics Involving Electronic Ttransitions 458

10-14 Electronic Spectra of Oxo-Bridged Dinuclear Iron Centers 458

10-15 Intervalence Electron Transfer Bands 459

10-16 Photoreactions 462

References Cited 462

Exercises 463

11

Magnetism 469

11-1 Introduction 469

11-2 Types of Magnetic Behavior 471

XiV Contents

11-3 Van Vleck’s Equation 476

11-4 Applications of Susceptibility Measurements 483

11-5 Intramolecular Effects 486

11-6 High Spin-Low Spin Equilibria 489

11-7 Measurement of Magnetic Susceptibilities 490

11-8 Superparamagnetism 491

References Cited 494

Exercises 496

12

Nuclear Magnetic Resonance of Paramagnetic Substances in Solution 500

by Ivano Bertini and C. Luchinat

12-1 Introduction 500

12-2 Properties of Paramagnetic Compounds 501

12-3 Considerations Concerning Electron Spin 503

12-4 The Contact Shift 507

12-5 The Pseudocontact Shift 508

12-6 Lanthanides 510

12-7 Factoring the Contact and Pseudocontact Shifts 512

12-8 The Contact Shift and Spin Density 514

12-9 Factors Affecting Nuclear Relaxation in Paramagnetic

System 519

12-10 Relaxometry 524

12-11 Electronic Relaxation Times 527

12-12 Contrast Agents 530

12-13 Trends in the Development of Paramagnetic NMR 531

12-14 Some Applications 534

12-15 The Investigation of Bimetallic Systems 543

References Cited 552

Exercises 556

13

Electron Paramagnetic Resonance Spectra of Transition Metal Ion

Complexes 559

13-1 Introduction 559

13-2 Interpretation of the g-Values 564

13-3 Hyperfine Couplings and Zero Field Splittings 571

13-4 Ligand Hyperfine Couplings 576

13-5 Survey of the EPR Spectra of First-Row Transition Metal Ion

Complexes 578

13-6 The EPR of Metal Clusters 591

13-7 Double Resonance and Fourier Transform EPR Techniques 594

References Cited 594

Additional References 596

Exercises 597

503

Contents XV

14

Nuclear Quadrupole Resonance Spectroscopy, NOR 604

14-1 Introduction 604

14-2 Energies of the Quadrupole Transitions 607

14-3 Effect of a Magnetic Field on the Spectra 611

14-4 Relationship Between Electric Field Gradient and

Molecular Structure 612

14-5 Applications 616

14-6 Double Resonance Techniques 620

References Cited 622

Additional References 623

Exercises 624

15

M6ssbauer Spectroscopy 626

15-1 Introduction 626

15-2 Interpretation of Isomer Shifts 630

15-3 Quadrupole Interactions 631

15-4 Paramagnetic Mbssbauer Spectra 633

15-5 Mossbauer Emission Spectroscopy 635

15-6 Applications 635

References Cited 646

Series 646

Exercises 647

16

Ionization Methods: Mass Spectrometry, Ion Cyclotron Resonance, Photoelectron Spectroscopy 650

Mass Spectrometry 650

16-1 Instrument Operation and Presentation of Spectra 650

16-2 Processes That Can Occur When a Molecule and a High

Energy Electron Combine 655

16-3 Fingerprint Application 657

16-4 Interpretation of Mass Spectra 659

16-5 Effect of Isotopes on the Appearance of a Mass

Spectrum 660

16-6 Molecular Weight Determinations; Field Ionization

Techniques 662

16-7 Evaluation of Heats of Sublimation and Species in the

Vapor Over High Melting Solids 663

16-8 Appearance Potentials and Ionization Potentials 664

FTICR/MS 665

16-9 The Fourier Transform Ion Cyclotron Resonance Technique 665

XVi Contents

Surface Science Techniques 667

16-10 Introduction 667

16-11 Photoelectron Spectroscopy 667

16-12 SIMS (Secondary Ion Mass Spectrometry) 677

16-13 LEED, AES, and HREELS Spectroscopy 678

16-14 STM (Scanning Tunneling Microscopy) and AFM

(Atomic Force Microscopy) 680

EXAFS and XANES 681

16-15 Introduction 681

16-16 Applications 682

References Cited 682

Exercises 685

17

X-Ray Crystallography 689

by Joseph W. Ziller and Arnold L. Rheingold

17-1 Introduction 689

Principles 690

17-2 Diffraction of X-Rays 690

17-3 Reflection and Reciprocal Space 691

17-4 The Diffraction Pattern 693

17-5 X-Ray Scattering by Atoms and Structures 693

Crystals 695

17-6 Crystal Growth 695

17-7 Selection of Crystals 696

17-8 Mounting Crystals 697

Methodology 698

17-9 Diffraction Equipment 698

17-10 Diffractometer Data Collection 699

17-11 Computers 700

Some Future Developmenti- 700

17-12 Area Detectors 700

17-13 X-Ray versus Neutron Diffraction 701

17-14 Synchrotron Radiation 701

Symmetry and Related Concerns 701

17-15 Crystal Classes 701

17-16 Space Groups 703

17-17 Space-Group Determination 704

17-18 Avoiding Crystallographic Mistakes 705

17-19 Molecular versus Crystallographic Symmetry 707

17-20 Quality Assessment 707

17-21 Crystallographic Data 710

Contents XVIl

References Cited 711

Exercises 711

Appendix A

Character Tables for Chemically Important Symmetry Groups 713

Appendix B

Character Tables for Some Double Groups 724

Appendix

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “دانلود کتاب طیف سنجی در شیمی معدنی دراگو ویرایش 2 Physical Methods for Chemists”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

*

code